ST2221A

Version : A.035

Issue Date : 2002/7/22

File Name : SP-ST2221A-A.035

Total Pages : 17

8-Bit CONSTANT CURRENT LED DRIVERS

ST2221A

8-Bit CONSTANT CURRENT LED DRIVERS

General Description

The ST2221A is specifically designed for LED and LED DISPLAY constant current drivers. The value of constant current can be varied using an external resistor ($I_{out} = 5 \sim 90 \text{mA}$). The devices include an 8-bit shift registers, latches, and constant current drivers on a single Silicon CMOS chip.

Features

• Constant Current Output: Current with one resistor for 5mA to 90mA

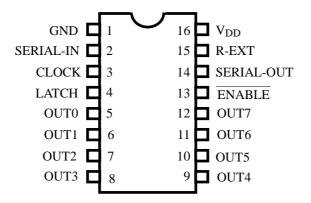
• Maximum Clock Frequency : 25MHz (Cascade Operation)

• 5V CMOS Compatible Input

• Package: PDIP16,SOP16,SSOP16

• Constant Current Matching: $(Ta = 25^{\circ}C \cdot VDD = 5.0V)$

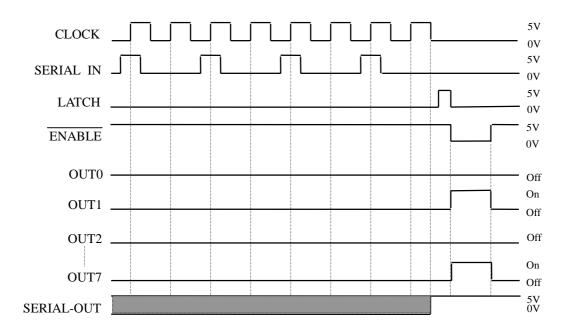
Bit-to-Bit : \pm 6% \ Chip-to-Chip : \pm 10% \


@ $Iout = 5 \sim 40 \text{mA}$

Bit-to-Bit : \pm 6% \ Chip-to-Chip : \pm 10% \


@ $Iout = 40 \sim 90mA$

Pin Connection (Top view)



Block Diagram

Timing Diagram

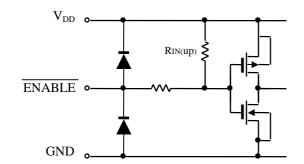
(Note) Latches are level sensitive (not edge triggered).

LATCH-terminal = H level, latches become transparent; LATCH-terminal = L level, latches hold data.

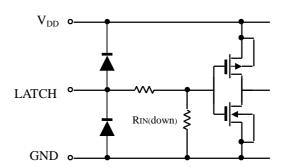
ENABLE-terminal = H level, all outputs (OUT0~7) are off.

An external resistor is connected between R-EXT and GND for setting up the value of constant current.

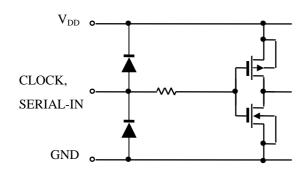
SERIAL-OUT changes state on the falling edges of clock.

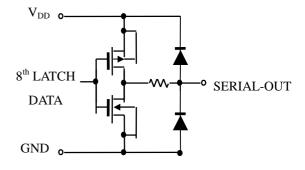

Pin Description

PIN No.	PIN NAME	FUNCTION
1	GND	GND terminal
2	SERIAL-IN	Input terminal of a data shift register
3	CLOCK	Input terminal of a clock for shift register
4	LATCH	Input terminal for data strobe
5~12	OUT0~7	Output terminals
13	ENABLE	Input terminal for output enable (active low)
14	SERIAL-OUT	Output terminal of a data shift register
15	R-EXT	Input terminal of an external resistor
16	$V_{ m DD}$	5V Supply voltage terminal



Equivalent Circuit of Inputs and Outputs


1. ENABLE terminal


2. LATCH terminal

3. CLOCK, SERIAL-IN terminal

4. SERIAL-OUT terminal

Maximum Ratings (Ta=25°C, Tj(max) = 140°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vdd	0 ~ 7.0	V
Input Voltage	VIN	-0.4 ~ VDD+0.4	V
Output Current	Iout	90	mA
Output Voltage	Vout	-0.5 ~ 9.5	V
Clock Frequency	fCLK	25	MHz
GND Terminal Current	IGND	720	mA
		1.12 (PDIP-16 : Ta=25°C)	
Power Dissipation	PD	0.86 (SOP-16 : Ta=25°C)	W
		0.82 (SSOP-16 : Ta=25°C)	
		85 (PDIP-16)	
Thermal Resistance	Rth(j-a)	110.9 (SOP-16)	°C/W
		115.9 (SSOP-16)	
Storage Temperature	Tstg	-55 ~ 150	

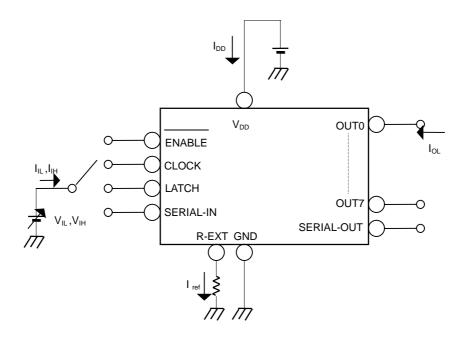
Recommended Operating Condition

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Supply Voltage VDD			4.5	5.0	5.5	V	
Output Voltage	Vout	_			9	V	
Operating temperature	T_{OPR}		-40		85	$^{\circ}\!\mathbb{C}$	
	Io	OUTn	5		88	mA	
Output Current	Іон	SERIAL-OUT			1.0		
	IOL	SERIAL-OUT			-1.0		
Input Voltage	Vih		0.7VDD		VDD+0.3	V	
input voitage	VIL	-0.3			0.3VDD	V	
LATCH Pulse Width	tw LAT		15			ns	
CLOCK Pulse Width	tw CLK		15			ns	
Set-up Time for DATA	tsetup(D)	$VDD = 4.5 \sim 5.5 \text{ V}$	20			ns	
Hold Time for DATA	thold(D)		20			ns	
Set-up Time for LATCH	tsetup(L)		15			ns	
Clock Frequency	fCLK	Cascade operation			25	MHz	
		$Ta = 85^{\circ}C(PDIP-16)$			0.41		
Power Dissipation	PD	$Ta = 85^{\circ}C(SOP-16)$			0.32	W	
		$Ta = 85^{\circ}C(SSOP-16)$			0.30	<u> </u>	

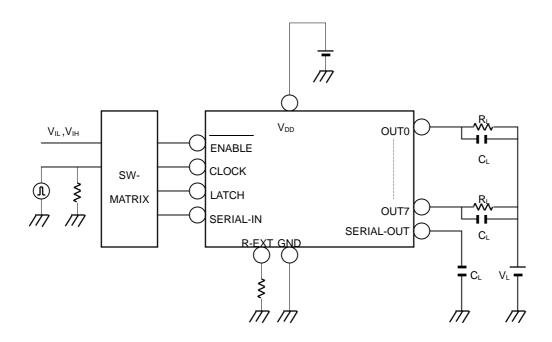
Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH		0.7VDD		VDD	V
Input Voltage "L" Level	VIL		GND		0.3VDD	
Output Leakage Current	Іон	VOH = 7.5 V			1.0	uA
Output Voltage (S - OUT)	Vol	IOL = 1.0 mA	_		0.4	V
Output voltage (5 - 001)	Voн	IOH = -1.0 mA	OH = -1.0 mA 4.6 —		_	V
Output Current (Bit-Bit)	IOL1	Vout = 0.7 ± 0.25 V REXT = 910Ω		3	6	%
output Current (Bit-Bit)	IOL2	Vout = 0.7 ± 0.25 V REXT = 360Ω		3	6	%
Output Current (Chip-Chip)	IOL3	Vout = $0.7V$ REXT = 910Ω		5	10	%
Output Current (Cmp-Cmp)	IOL4	Vout = $0.7V$ REXT = 360Ω		5	10	%
Supply Voltage Regulation	% / VDD	REXT = 470Ω , Ta = $-40 \sim 85$ °C		1.5	5.0	% / V
Pull-Up Resistor	RIN(up)		150	300	600	ΚΩ
Pull-Down Resistor	RIN(down)		100	200	400	ΚΩ
	IDD(off)1	REXT = OPEN, OUT0 \sim 7 = off		0.3	0.6	
Supply Current "OFF"	IDD(0ff)2	REXT = 470Ω , OUT0~7 = off	4.0	5.6	7.8	
	IDD(off)3	REXT = 250Ω , OUT0~7 = off	7.3	10.2	14.3	mA
Supply Current "ON"	IDD(on)1	REXT = 470Ω , OUT0~7 = on	4.0	5.6	7.8	
Supply Cultellt ON	IDD(on)2	REXT = 250Ω , OUT0~7 = on	7.3	10.2	14.3	

Switching Characteristics (Ta = 25 °C unless otherwise noted)

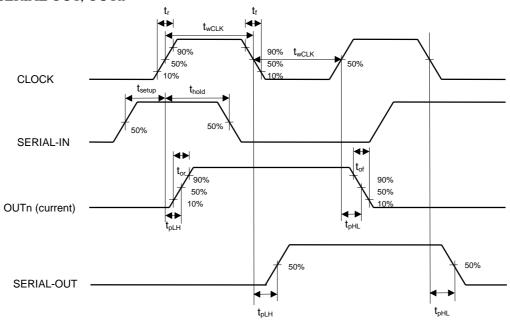

CHARACTERISTIC		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time ("L" to "H")	SIN-OUTn	- tрLн	REXT= $470\Omega^1$ VL= 3.0 V RL= 65Ω CL= 13 pF		115	230	ns
	LATCH-OUTn				115	230	
	ENABLE-OUTn				115	230	
	CLK-SOUT				15	20	
_	SIN-OUTn	tpнL			120	160	ns
Propagation Delay Time ("H" to "L")	LATCH-OUTn				120	160	
	ENABLE-OUTn				120	160	
	CLK-SOUT				15	20	
Output Current Rise Time		tor		70	140	280	ns
Output Current Fall Time		tof		55	110	220	ns

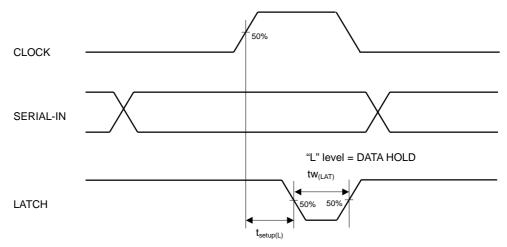
¹ Delay Time tpLH and Rise Time tor will both increase as the Rext value increased.



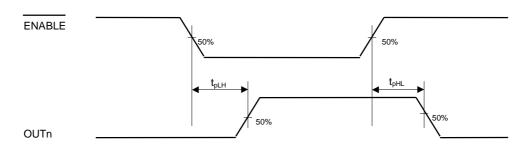
Test Circuit

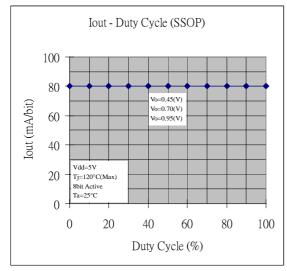
DC characteristic

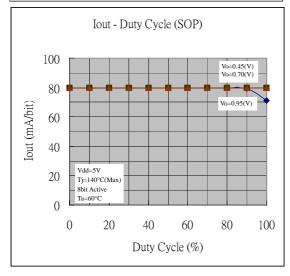

AC characteristic

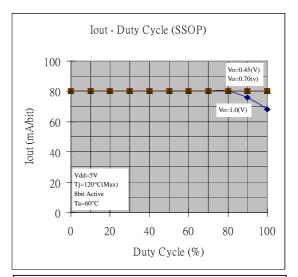


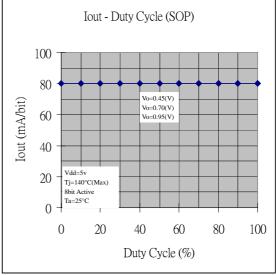
Timing Diagram

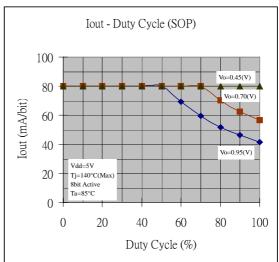

1. CLOCK-SERIAL OUT, OUTn

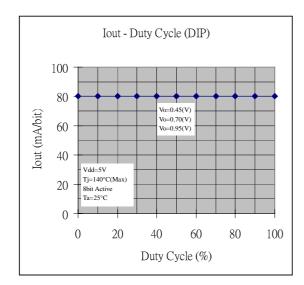

2. CLOCK-LATCH

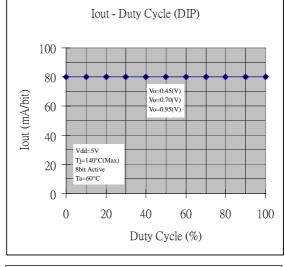

3. ENABLE-OUTn

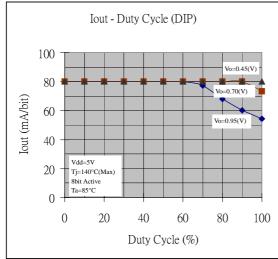


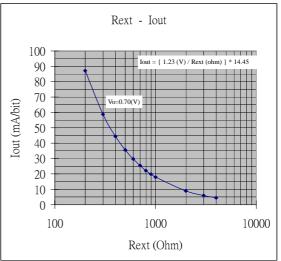


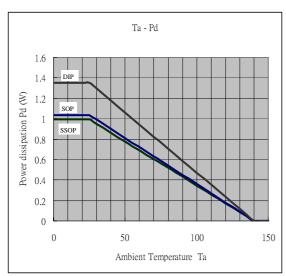


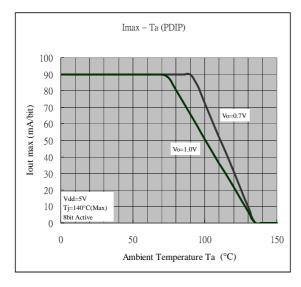


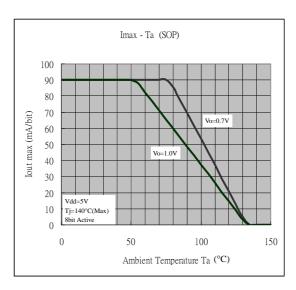


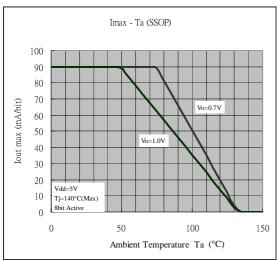












Note

As the power dissipation of a semiconductor chip is limited its package and ambient temperature, this device requires a maximum output current be calculated for a given operating condition. The maximum allowable power consumption (Pd (max)) of this device is calculated as follows:

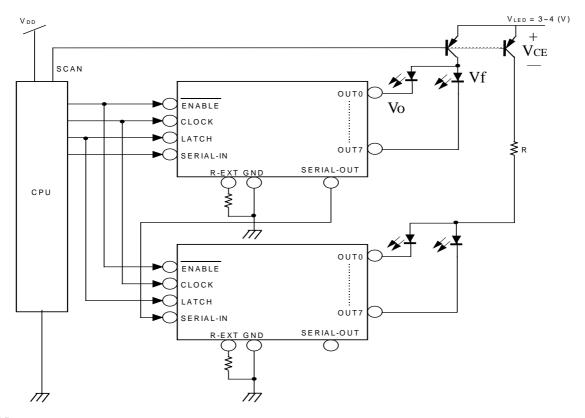
$$Pd(\max)(Watt) = \frac{(\text{Tj (junction temperature) (max)} - \text{Ta (ambient temperature))(}^{\circ}C)}{\text{Rth (}^{\circ}C/Watt)}$$

Based on the Pd (max), the maximum allowable current can be calculated as follows:

$$Iout = (Pd - V_{DD} \cdot I_{DD}) / (\# outputs \cdot Vo \cdot Duty)$$

System Configuration Example

[1] Output current (I_{OUT})

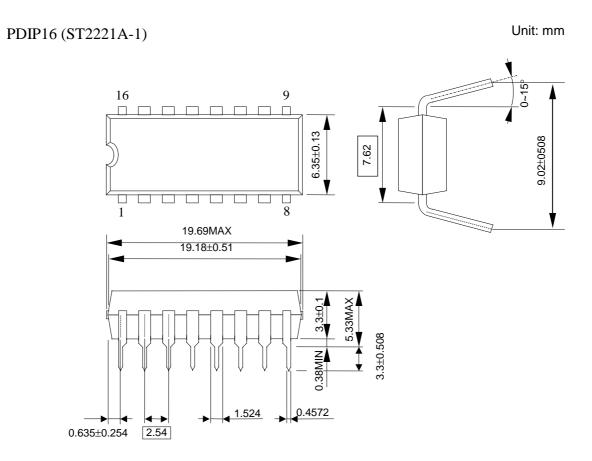

Sink current is set by the external resistor as shown in figure (Iout vs. Rext).

[2] LED supply voltage (V_{LED}) setup

$$V_{LED} = V_{CE} (T_r V_{sat}) + V_f (LED \text{ forward voltage}) + V_O (IC \text{ supply voltage})$$

To prevent too much power dissipated by the device due to higher V_{LED} , an additional R can be used to reduce the Vout when the outputs consume current:

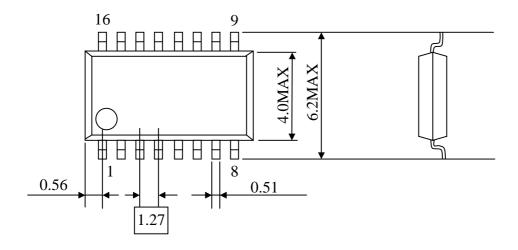
$$R = \frac{V_{LED} - V_f - V_O(\min)}{I_O(\max) \bullet Bit(\max)}$$

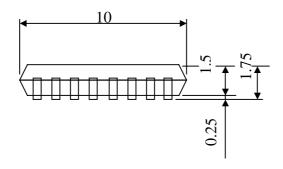


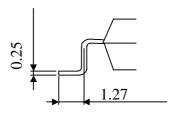
Note

This device has only one ground pin shared by signal, output sink current, and power ground. It is advisable to pattern the ground layout with minimized inductance such that the switching noise induced by the input signals and the output sink current would not cause chip malfunction. To prevent the drivers' outputs from damage by overshoot stress, it is also advisable not to turn off the drivers and scan transistors simultaneously.

Package Outline

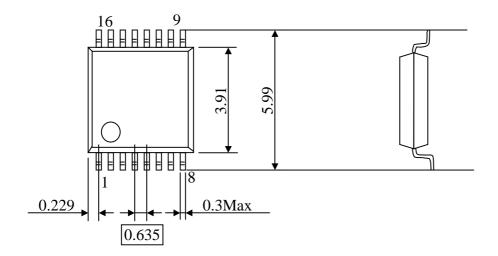

Weight: 1.11g(Typ.)

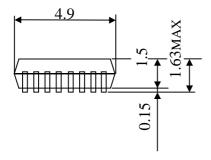


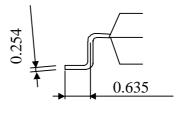

Package Outline

SOP16 (ST2221A-3)

Unit: mm






Package Outline

SSOP16 (ST2221A-2)

Unit: mm

The products listed herein are designed for ordinary electronic applications, such \Box as electrical appliances, audio-visual equipment, communications devices and so \Box
on. Hence, it is advisable that the devices should not be used in medical \Box
instruments, surgical implants, aerospace machinery, nuclear power control \Box
systems, disaster/crime-prevention equipment and the like. Misusing those
products may directly or indirectly endanger human life, or cause injury and \Box
property loss.
Silicon Touch Technology Inc / Toyolite Technologies Corporation will not take \Box
any responsibilities regarding the misusage of the products mentioned above. \Box
Anyone who purchases any products described herein with the above-mentioned \Box
intention or with such misused applications should accept full responsibility and \Box
indemnify. Silicon Touch Technology Inc / Toyolite Technologies Corporation and $\ \Box$
its distributors and all their officers and employees shall defend jointly and \Box
severally against any and all claims and litigation and all damages, cost and \Box
expenses associated with such intention and manipulation.