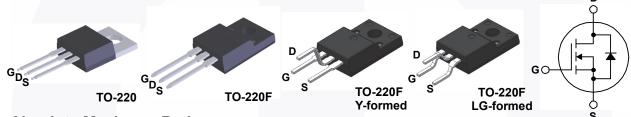


August 2014

FDP51N25 / FDPF51N25 N-Channel UniFETTM MOSFET 250 V, 51 A, 60 m Ω

Features


- $R_{DS(on)}$ = 48 m Ω (Typ.) @ V_{GS} = 10 V, I_{D} = 25.5 A
- Low Gate Charge (Typ. 55 nC)
- Low C_{rss} (Typ. 63 pF)

Applications

- PDP TV
- Lighting
- · Uninterruptible Power Supply
- AC-DC Power Supply

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Para	ameter	FDP51N25	FDPF51N25 FDPF51N25YDTU FDPF51N25RDTU	Unit
V_{DSS}	Drain-Source Voltage		250	V	
I _D	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)	51 30	51* 30*	A A
I _{DM}	Drain Current	- Pulsed (Note 1)	204	204*	Α
V _{GSS}	Gate-Source voltage			V	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1111		mJ
I _{AR}	Avalanche Current (Note 1)		51		Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		32		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5		V/ns
P_D	Power Dissipation (T _C = 25°C) - Derate Above 25°C		320 3.7	38 0.3	W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300		°C

^{*}Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	FDP51N25	FDPF51N25 FDPF51N25YDTU FDPF51N25RDTU	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.39	3.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDP51N25	FDP51N25	TO-220	Tube	N/A	N/A	50 units
FDPF51N25	FDPF51N25	TO-220F	Tube	N/A	N/A	50 units
FDPF51N25YDTU	FDPF51N25	TO-220F (Y-formed)	Tube	N/A	N/A	50 units
FDPF51N25RDTU	FDPF51N25	TO-220F (LG-formed)	Tube	N/A	N/A	50 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	neter Conditions		Тур.	Max.	Unit
Off Charac	cteristics			l	I	
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = 250 μ A, T_{J} = 25 $^{\circ}$ C				V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.25		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 250 V, V _{GS} = 0 V V _{DS} = 200 V, T _C = 125°C			1 10	μ Α μ Α
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0V			-100	nA
On Charac	cteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 25.5 A	\	0.048	0.060	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 25.5 A		43		S
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		2620	3410	pF
C _{oss}	Output Capacitance	f = 1 MHz		530	690	pF
C _{rss}	Reverse Transfer Capacitance			63	90	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 125 V, I _D = 51 A,	/	62	135	ns
t _r	Turn-On Rise Time	V_{GS} = 10 V, R_{G} = 25 Ω		465	940	ns
t _{d(off)}	Turn-Off Delay Time			98	205	ns
t _f	Turn-Off Fall Time	(Note 4)		130	270	ns
Qg	Total Gate Charge	V _{DS} = 200 V, I _D = 51 A,		55	70	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		16		nC
Q_{gd}	Gate-Drain Charge	(Note 4)		27	/	nC
Drain-Sou	rce Diode Characteristics and Maximur	n Ratings				
I _S	Maximum Continuous Drain-Source Dio	de Forward Current			51	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F	orward Current			204	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 51 A			1.4	>
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 51 A,		178		ns
Q _{rr}	Reverse Recovery Charge	dl _F /dt =100 A/μs		4.0		μС

 $^{{\}it 1. Repetitive\ rating: pulse-width\ limited\ by\ maximum\ junction\ temperature.}$

^{2.} L = 0.68 mH, I $_{AS}$ = 51 A, V $_{DD}$ = 50 V, R $_{G}$ = 25 Ω , starting T $_{J}$ = 25°C.

^{3.} $I_{SD} \le 51$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, starting $T_J = 25^{\circ}C$. 4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

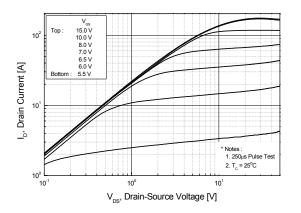


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

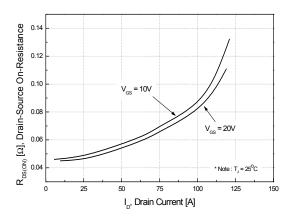


Figure 5. Capacitance Characteristics

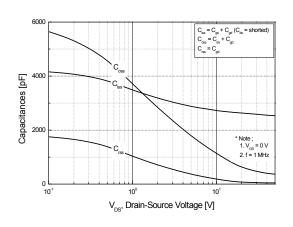


Figure 2. Transfer Characteristics

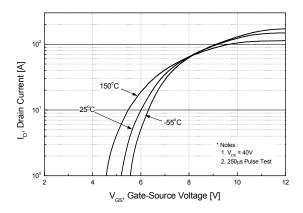


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

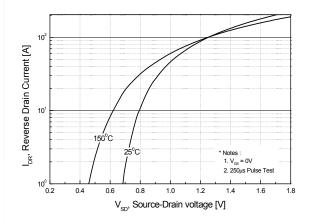


Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

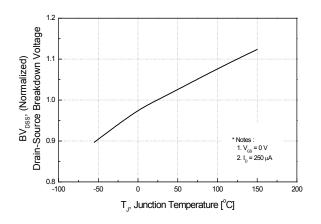


Figure 9-1. Maximum Safe Operating Area for FDP51N25

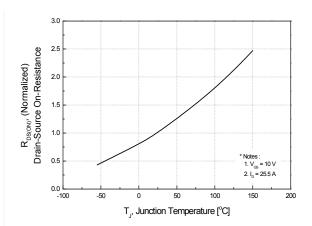


Figure 9-2. Maximum Safe Operating Area for FDPF51N25 / FDPF51N25YDTU

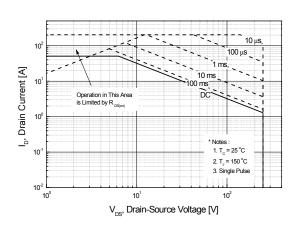
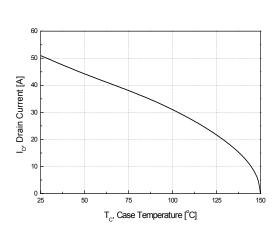
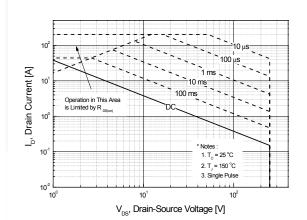




Figure 10. Maximum Drain Current vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FDP51N25

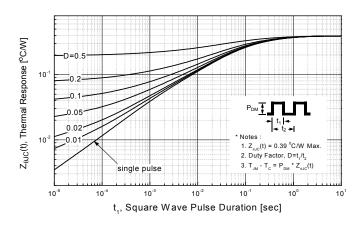


Figure 11-2. Transient Thermal Response Curve for FDPF51N25 / FDPF51N25YDTU

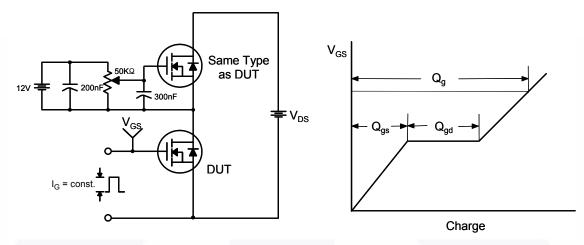


Figure 12. Gate Charge Test Circuit & Waveform

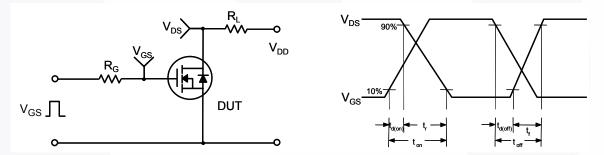


Figure 13. Resistive Switching Test Circuit & Waveforms

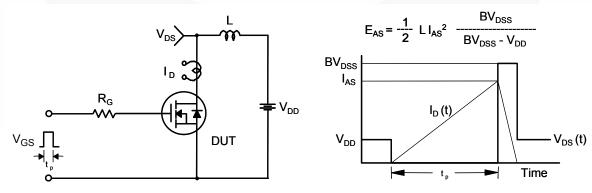


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

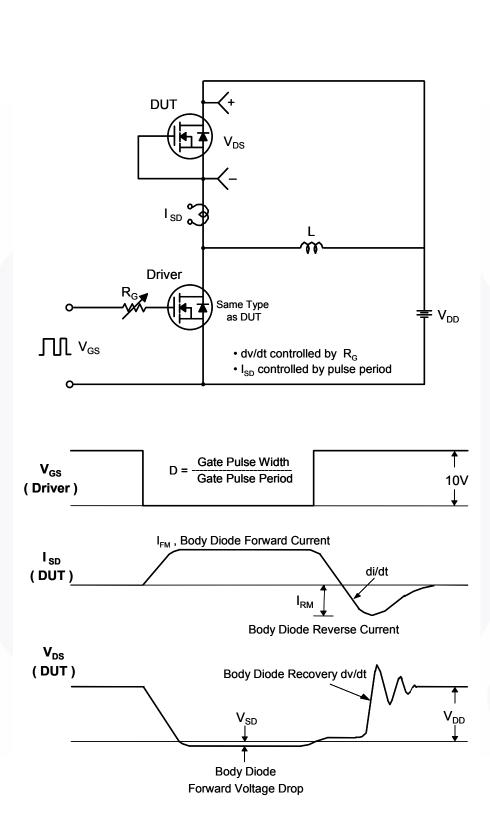
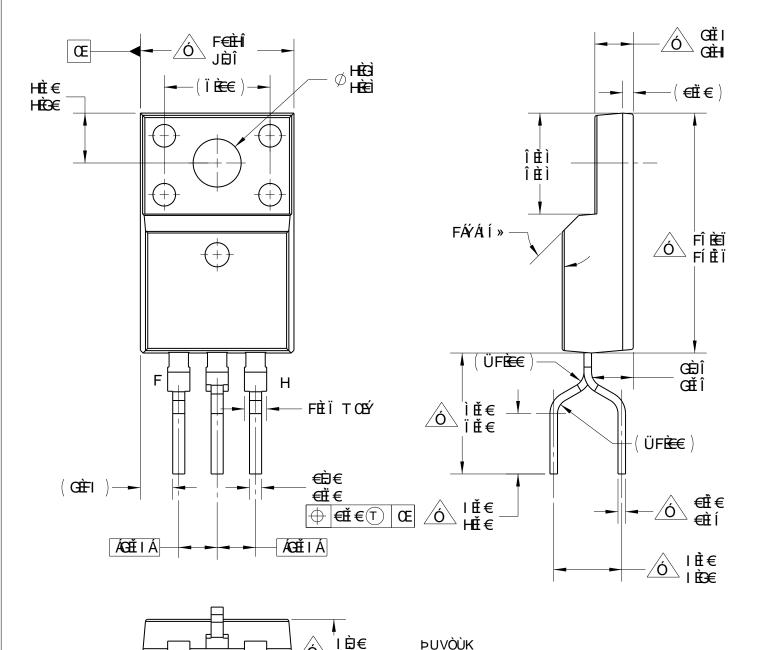
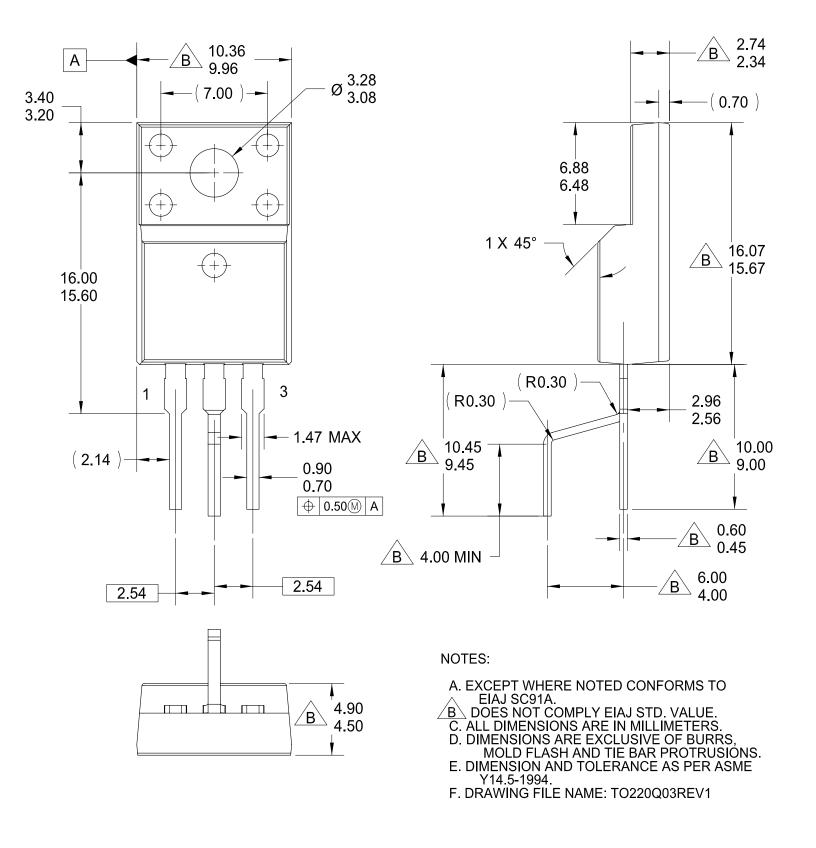
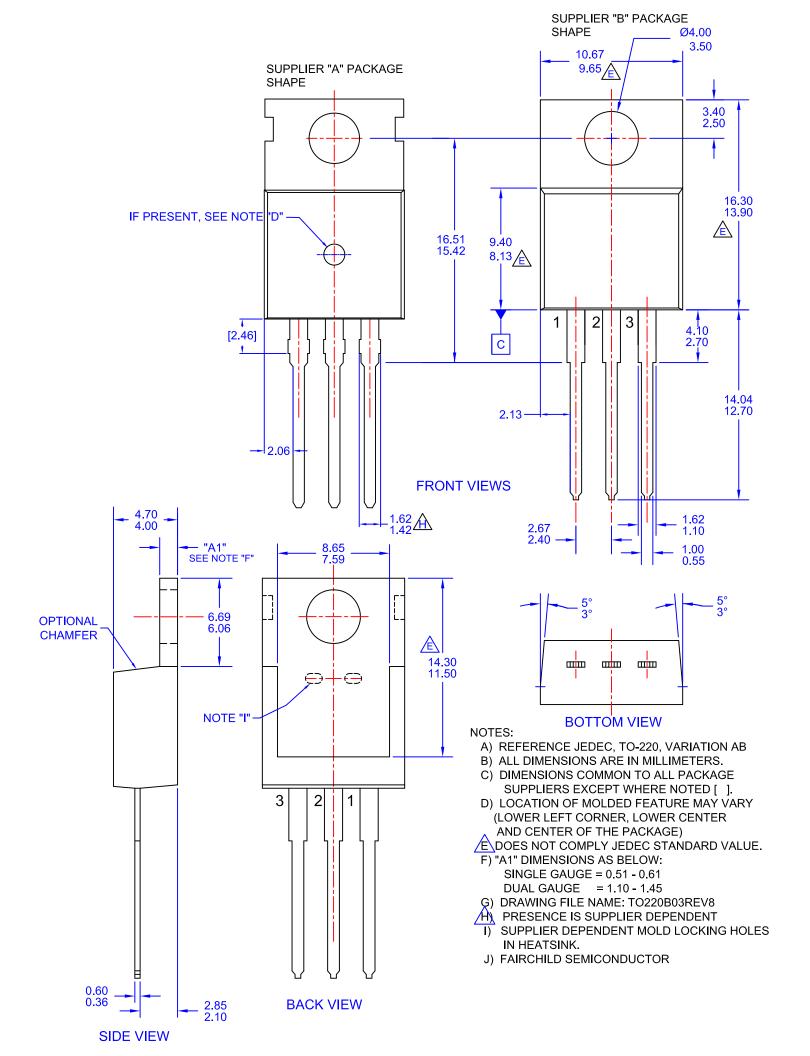



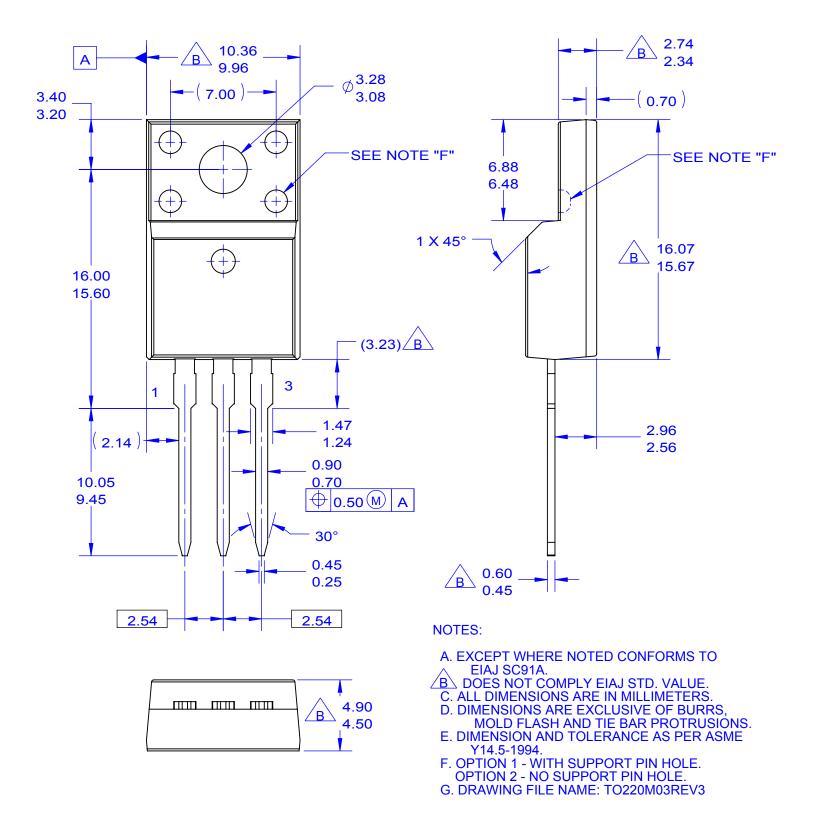
Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

	Údľová					
ĺ	POÜ ÖÒÙÔÜŒVŒÞ ÖŒVÒ ÓŸŦŒÚÚŒÖ					
	F	ÜÒŠÒŒÙÒÖÁ/U <i>Ä</i> ÖÔÔ	€ RWÞ€Ì	ÙÖŠÒÒÐÜWZPUW		

Ó


IĚ€


ÞUVÒÙK


ÁMEÓYÓÒÚVÁY PÒÜÒÁÞUVÒÖÁÔUÞØUÜT ÙÁVUÁ ÒORÂJÔJFŒ ÖŲÒVÁQUVÁÔUT, ÝŠIÝ,ÔOORÁÚV,ÖBÁ(ŒŠŅÒĖ, AKÔFÁCIŠŠÁÖCT ÒÞÙQUÞÙÁCIÐ ÒÁÐÁT (ŠŠÇT ÒVÒÜÙÈ Á UŠO POD PŮÁJE OÁ PÔÝ ÔŠÝ VÝ OŽ ÔÁ PÁ Ó WŮ Ü DÊ Á UŠO ÁZŠQE PÁJE OÁ OBO AÚ Ú Ú VÝ VŮ WÙ OD ÞÚ È AKÒ ĐÁ CỰ CHU ỦO PÁCH CÁ VU SỐ U CƠ ĐÔ CÁC LÁU ÔU ÁCH T CÁ MÁ

ŸFIĚLËJJIÈ ÁKONĚÖÜCEY OÞŐÁKOSÖÁÞCET ÒKÁVUGG€Þ€HÜÒXF

ŒÚÚÜUXŒŠÙ	ÓVZOÖ				_	
^{ŎŨŒY ÞK} ÓU ÓU ŸÁT ŒŠÖU	€IRWÞ€Ì		AIR	CHILD		
^{ÔPÒÒSÒÖK} ÙÖÆSÒÒ		SE	MICO	NDUCTO	Rтм	
ŒŰŰÜÜXÒÖK ÓŸÁPWŒÞÕ		vuœ	΀TU	J ŠÖÒÖ É A	ŠÖÉ ØWŠ	š
œúûuxàok PUY ŒÜÖÁŒŠŠÒÞ		ÚŒÔS	EÉÒO	ERÁÙÔJFÉÁ	ĬÕÁØUÜT	-
ÚŰURÒÔVŒÞ ŽT T á		UÓŒÓ ÚŒÓ ÖÚŒ ŒŐÁWTŐŰ FKF ÞÐÆT SVË/UGG€Þ€H			üàx F	
Ø ÔP		Ø υ ÜΤ ÒÜ	IŠŸK Þ£00E		ÙPÒÒVÁK F	ÁUØÁF

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{ll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda® Global Power Resource SM AX-CAP®* GreenBridge™

 AX-CAP^{®*}
 GreenBridge™

 BitSiC™
 Green FPS™

 Build it Now™
 Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder DEUXPEED® and Better™

MicroPak2™

MillerDrive™

MotionMax™

MotionGrid®

mWSaver®

OptoHiT™

OPTOLOGIC®

MTi[®]

MTx®

MVN®

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

ESBC™ MicroPak™

Fairchild®
Fairchild®
Fairchild Samisand

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™

QFET[®]
QS[™]
Quiet Series[™]
RapidConfigure[™]

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

TinyBoost®
TinyCalc™
TinyLogic®
TinyColc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™

TriFault Detect™
TRUECURRENT®*
uSerDes™

Ser Des

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain
 life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

control of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 174

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.