
National Semiconduc	Ctor	oruary 1995
LM148/LM149 Series Quad 7	41 Op Amp	
LM148/LM248/LM348 Quad 741 Op A LM149/LM349 Wide Band Decompen	•	
General Description	Features	
The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar	 741 op amp operating characteristics Low supply current drain Class AB output stage—no crossover distorti Pin compatible with the LM124 	A/Amplifier on
741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of	Low input offset voltage	1 mV
a single 741 type op amp. Other features include input off-	Low input offset current	4 nA
set currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between	 Low input bias current Gain bandwidth product 	30 nA
amplifiers has been achieved by independently biasing each	LM148 (unity gain)	1.0 MHz
amplifier and using layout techniques which minimize ther-	LM149 (A _V \ge 5)	4 MHz
mal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.	 High degree of isolation between amplifiers Overload protection for inputs and outputs 	120 dB
The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.		

©1995 National Semiconductor Corporation TL/H/7786

RRD-B30M115/Printed in U. S. A.

If Military/Aerospace sp Distributors for availabili	pecified devices are require	d, plea	ase cor	ntact	the N	lational	Semi	cond	uctor S	ales	Office/		
(Note 4)	ty and specifications.												
(),	L	LM148/LM149			LM248			LM348/LM349					
Supply Voltage		±22V			\pm 18V				\pm 18V				
Differential Input Voltage		±44V			$\pm 36V$				$\pm 36V$				
Output Short Circuit Duration (Note 1)		Continuous			Continuous				Continuous				
Power Dissipation (Pd at 25													
Thermal Resistance (θ_{jA}), (Note 2)		_								750 mW			
Molded DIP (N) P _d θ_{iA}		_			_				100°C/W				
σ _{jA} Cavity DIP (J) P _d		1100 mW			 800 mW				700 mW				
$ heta_{JA}$		110°C/W				110°C/W				110°C/W			
Maximum Junction Temperature (T _{jMAX})		150°C				110°C				100°C			
Operating Temperature Ra	nge -55°0	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$				$-25^{\circ}C \leq T_{A} \leq +85^{\circ}C$				$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$			
Storage Temperature Range		-65°C to +150°C				-65°C to +150°C				-65° C to $+150^{\circ}$ C			
Lead Temperature (Soldering, 10 sec.) Ceramic		300°C				300°C				300°C			
Lead Temperature (Solderi	ng, 10 sec.) Plastic									260°C	;		
Soldering Information													
Dual-In-Line Package		260°C				260°C			260°C				
Soldering (10 seconds) Small Outline Package		200 0				200 (0		260°C				
Vapor Phase (60 seconds)		215°C			215°C				215°C				
Infrared (15 seconds)		220°C 220°C						220°C					
	nting Methods and Their Effect	on Prod	luct Reli	ability''	for ot	her met	hods c	of sold	ering su	rface r	nount		
devices.		500)				500)				5001			
ESD tolerance (Note 5)		500V				500V				500V			
		000	V			5001	/			500 0			
		000	v			5001	/			5000			
Electrical Chara	cteristics (Note 3)	500	v			5001	/			3000			
Electrical Chara	cteristics (Note 3)		-	1140			-		249/I M				
Electrical Chara Parameter	Cteristics (Note 3) Conditions	LM	1148/LN		Min	LM248	- 		348/LM	1349	Units		
Parameter	Conditions		I148/LN Typ	Max	Min	LM248 Typ	Max	LM	Тур	1349 Max	Units		
Parameter nput Offset Voltage	$\label{eq:conditions} \begin{split} & \textbf{Conditions} \\ & \textbf{T}_{A} = 25^{\circ}\text{C}, \textbf{R}_{S} \leq 10 \; \text{k}\Omega \end{split}$	LM	1148/LN Typ 1.0	Max 5.0	Min	LM248 Typ 1.0	Max 6.0		Typ 1.0	349 Max 6.0	Units mV		
Parameter nput Offset Voltage nput Offset Current	$\label{eq:TA} \begin{array}{l} \mbox{Conditions} \\ T_A = 25^\circ \mbox{C}, \mbox{R}_S \leq 10 \ \mbox{k} \Omega \\ T_A = 25^\circ \mbox{C} \end{array}$	LM	1148/LN Typ 1.0 4	Max 5.0 25	Min	LM248 Typ 1.0 4	Max 6.0 50		Typ 1.0 4	349 Max 6.0 50	Units mV nA		
Parameter nput Offset Voltage nput Offset Current	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ C, \ \mbox{R}_S \leq 10 \ \mbox{k} \Omega \\ T_A = 25^\circ C \\ T_A = 25^\circ C \end{array}$	LM Min	1148/LW Typ 1.0 4 30	Max 5.0		LM248 Typ 1.0 4 30	Max 6.0		Typ 1.0 4 30	349 Max 6.0	Units mV nA nA		
Parameter nput Offset Voltage nput Offset Current nput Bias Current	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ \mbox{C}, \mbox{R}_S \leq 10 \ \mbox{k} \Omega \\ T_A = 25^\circ \mbox{C} \\ T_A = 25^\circ \mbox{C} \\ T_A = 25^\circ \mbox{C} \\ \end{array}$	LM	1148/LN Typ 1.0 4	Max 5.0 25	Min 0.8	LM248 Typ 1.0 4	Max 6.0 50		Typ 1.0 4	349 Max 6.0 50	Units mV nA		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ \mbox{C}, \mbox{R}_S \leq 10 \ \mbox{k} \Omega \\ T_A = 25^\circ \mbox{C} \\ T_A = 25^\circ \mbox{C} \end{array}$	LM Min	1148/LW Typ 1.0 4 30	Max 5.0 25		LM248 Typ 1.0 4 30	Max 6.0 50	Min	Typ 1.0 4 30	349 Max 6.0 50	Units mV nA nA		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ \mbox{C}, \mbox{R}_S \leq 10 \ \mbox{k} \Omega \\ T_A = 25^\circ \mbox{C} \\ T_A = 25^\circ \mbox{C} \\ T_A = 25^\circ \mbox{C} \\ \end{array}$	LM Min	148/LN Typ 1.0 4 30 2.5	Max 5.0 25 100		LM248 Typ 1.0 4 30 2.5	Max 6.0 50 200	Min	Typ 1.0 4 30 2.5	349 Max 6.0 50 200	Units mV nA nA MΩ		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers Large Signal Voltage Gain	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^{\circ} C, \ R_S \leq 10 \ k\Omega \\ T_A = 25^{\circ} C \\ T_A = 25^{\circ} C \\ T_A = 25^{\circ} C \\ T_A = 25^{\circ} C, \ V_S = \pm 15V \\ T_A = 25^{\circ} C, \ V_S = \pm 15V \\ \end{array}$	LM Min 0.8 0.8 50 z	1148/LN Typ 1.0 4 30 2.5 2.4	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4	349 Max 6.0 50 200	Units mV nA nA MΩ mA		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers Large Signal Voltage Gain Amplifier to Amplifier Coupling	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to 20 \ kH \\ (Input Referred) \ See \ Crosstal \\ \hline Test \ Circuit \end{array}$	LM Min 0.8 0.8 50 z	Typ 1.0 4 30 2.5 2.4 160 - 120	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/mV dB		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers .arge Signal Voltage Gain Amplifier to Amplifier Coupling	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ F = 1 \ Hz \ to 20 \ kH \\ (Input Referred) \ See \ Crosstal \\ \hline Test \ Circuit \\ \hline LM148 \ Series \end{array}$	LM Min 0.8 0.8 50 z	148/LN Typ 1.0 4 30 2.5 2.4 160	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/mV		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers arge Signal Voltage Gain Amplifier to Amplifier Coupling	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to 20 \ kH \\ (Input Referred) \ See \ Crosstal \\ \hline Test \ Circuit \end{array}$	LM Min 0.8 0.8 50 z	Typ 1.0 4 30 2.5 2.4 160 - 120	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/mV dB		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers arge Signal Voltage Gain Amplifier to Amplifier Coupling	$\label{eq:conditions} \begin{array}{c} \mbox{Conditions} \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to 20 \ kH \\ \hline (Input Referred) See \ Crosstal \\ \hline Test \ Circuit \\ \hline LM148 \ Series \\ \hline T_A = 25^\circ C \end{array}$	LM Min 0.8 0.8 50 z	Typ 1.0 4 30 2.5 2.4 160 -120 1.0	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/mV dB MHz MHz		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers arge Signal Voltage Gain amplifier to Amplifier Coupling Small Signal Bandwidth	$\label{eq:conditions} \begin{array}{ c c c } \hline Conditions \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to \ 20 \ kF \\ (Input Referred) \ See \ Crosstal \\ \hline Test \ Circuit \\ \hline T_A = 25^\circ C \\ LM148 \ Series \\ \hline T_A = 25^\circ C \\ LM148 \ Series \ (A_V = 1) \\ \hline T_A = 25^\circ C \end{array}$	LM Min 0.8 0.8 50 z	148/LN Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60	349 Max 6.0 50 200	Units mV nA MΩ mA V/mV dB MHz degrees		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers arge Signal Voltage Gain Amplifier to Amplifier Coupling	$\label{eq:conditions} \begin{array}{ c c c } \hline Conditions \\ \hline T_A = 25^\circ\text{C}, \ R_S \leq 10 \ \text{k}\Omega \\ \hline T_A = 25^\circ\text{C} \\ \hline T_A = 25^\circ\text{C} \\ \hline T_A = 25^\circ\text{C}, \ V_S = \pm 15 \text{V} \\ \hline T_A = 25^\circ\text{C}, \ V_S = \pm 15 \text{V} \\ \hline V_{OUT} = \pm 10\text{V}, \ R_L \geq 2 \ \text{k}\Omega \\ \hline T_A = 25^\circ\text{C}, \ f = 1 \ \text{Hz to } 20 \ \text{kH} \\ \hline (Input Referred) \ \text{See Crosstal} \\ \hline \text{Test Circuit} \\ \hline \begin{array}{c} LM148 \ \text{Series} \\ T_A = 25^\circ\text{C} \\ LM148 \ \text{Series} \\ \hline LM148 \ \text{Series} \\ \hline LM148 \ \text{Series} \\ \hline \text{LM148 \ Series} \\ \hline \end{array}$	LM Min 0.8 0.8 50 z	148/LM Typ 1.0 4 30 2.5 2.4 160 120 1.0 4.0	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 - 120 1.0 4.0	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/mV dB MHz		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers .arge Signal Voltage Gain Amplifier to Amplifier Coupling Small Signal Bandwidth Phase Margin	$\begin{tabular}{ c c c c }\hline C onditions $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	LM Min 0.8 0.8 50 z	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	349 Max 6.0 50 200	Units mV nA MΩ mA V/mV dB MHz degrees degrees v/μs		
Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance Supply Current All Amplifiers arge Signal Voltage Gain Amplifier to Amplifier Coupling Small Signal Bandwidth Phase Margin Slew Rate	$\label{eq:conditions} \begin{array}{ c c c } \hline Conditions \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to \ 20 \ kF \\ (Input \ Referred) \ See \ Crosstal \\ \hline Test \ Circuit \\ \hline T_A = 25^\circ C \\ LM148 \ Series \\ \hline LM148 \ Series \\ A = 25^\circ C \\ LM149 \ Series \ (A_V = 1) \\ \hline T_A = 25^\circ C \\ LM149 \ Series \ (A_V = 5) \\ \hline LM148 \ Series \ (A_V = 1) \\ \hline T_A = 25^\circ C \\ LM149 \ Series \ (A_V = 5) \\ \hline \end{array}$	LM Min 0.8 0.8 50 z	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5 2.0	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5 2.0	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5 2.0	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/mV dB MHz degrees degrees		
	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline T_A &= 25^\circ C, \ R_S &\leq 10 \ k\Omega \\ \hline T_A &= 25^\circ C \\ \hline T_A &= 25^\circ C \\ \hline T_A &= 25^\circ C, \ V_S &= \pm 15V \\ \hline T_A &= 25^\circ C, \ V_S &= \pm 15V \\ \hline V_{OUT} &= \pm 10V, \ R_L &\geq 2 \ k\Omega \\ \hline T_A &= 25^\circ C, \ f &= 1 \ Hz \ to 20 \ kF \\ (Input Referred) \ See \ Crosstal \\ \hline Test \ Circuit \\ \hline T_A &= 25^\circ C \\ \hline LM148 \ Series \\ \hline LM148 \ Series \ (A_V &= 1) \\ \hline T_A &= 25^\circ C \\ \hline LM149 \ Series \ (A_V &= 5) \\ \hline LM148 \ Series \ (A_V &= 1) \\ \hline T_A &= 25^\circ C \\ \hline LM148 \ Series \ (A_V &= 1) \\ \hline T_A &= 25^\circ C \\ \hline LM148 \ Series \ (A_V &= 1) \\ \hline T_A &= 25^\circ C \\ \hline \end{tabular}$	LM Min 0.8 0.8 50 z	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	349 Max 6.0 50 200	Unit: mV nA nA MΩ mA V/m dB MHz degre degre degre		

6.0

75

325

7.5

125

500

7.5

100

400

mV

nA

nA

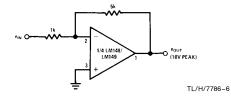
Input Offset Voltage

Input Offset Current

Input Bias Current

 $R_S \leq 10 \ k\Omega$

	acteristics (Note 3) (Continue	LM148/LM149			LM248			LM348/LM349			1
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Large Signal Voltage Gain	$\label{eq:VS} \begin{array}{l} V_S = \pm 15 V, V_{OUT} = \pm 10 V, \\ R_L > 2 k \Omega \end{array}$	25			15			15			V/mV
Output Voltage Swing	$V_{S}=~\pm15V, R_{L}=~10~k\Omega \\ R_{L}=~2~k\Omega \label{eq:VS}$	±12 ±10	±13 ±12		±12 ±10	±13 ±12		±12 ±10	±13 ±12		V V
Input Voltage Range	$V_{S} = \pm 15V$	±12			±12			±12			V
Common-Mode Rejection Ratio	$R_{S} \leq 10 \ k\Omega$	70	90		70	90		70	90		dB
Supply Voltage Rejection	$R_{S} \leq 10 \; k\Omega, \; \pm 5V \leq V_{S} \leq \; \pm 15V$	77	96		77	96		77	96		dB


Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by T_{jMAX} , θ_{jA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{jMAX} - T_A)/\theta_{jA}$ or the 25°C P_{dMAX} , whichever is less.

Note 3: These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range ($T_L \le T_A \le T_H$) unless otherwise noted. Note 4: Refer to RETS 148X for LM148 military specifications and refer to RETS 149X for LM149 military specifications.

Note 5: Human body model, 1.5 k Ω in series with 100 pF.

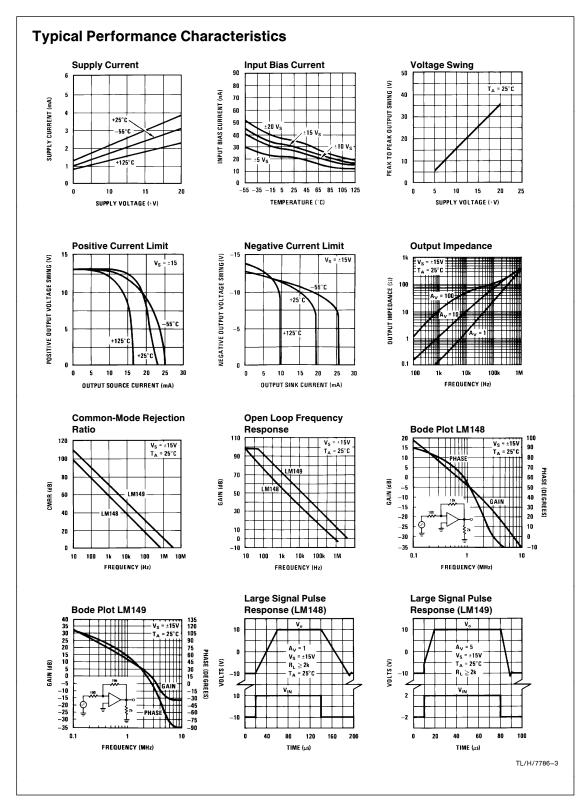
Cross Talk Test Circuit

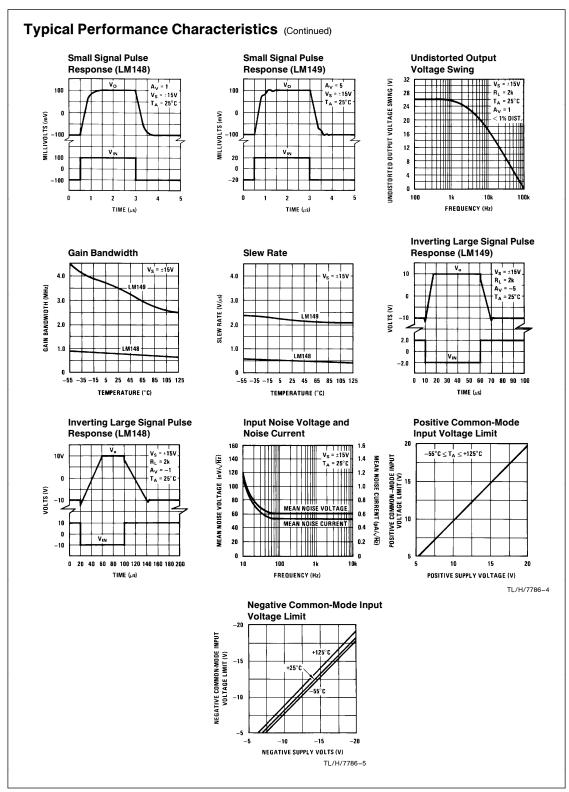
Application Hints

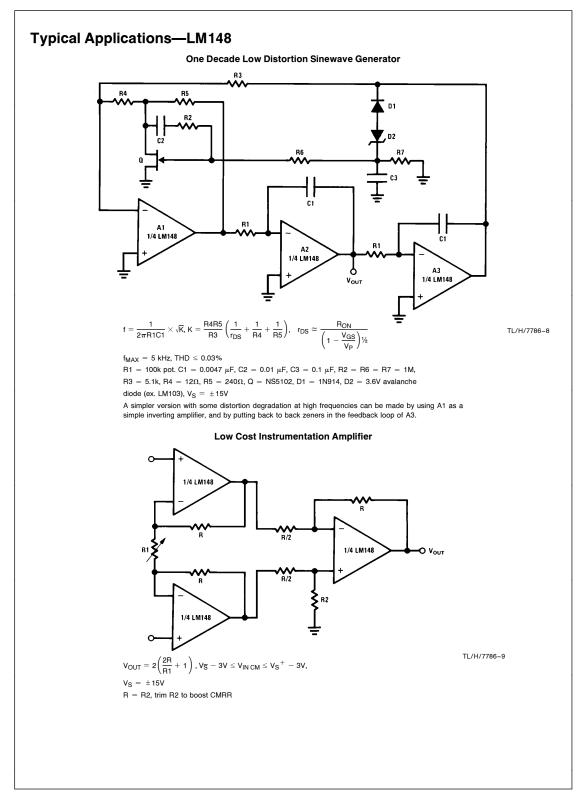
The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance. The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5.

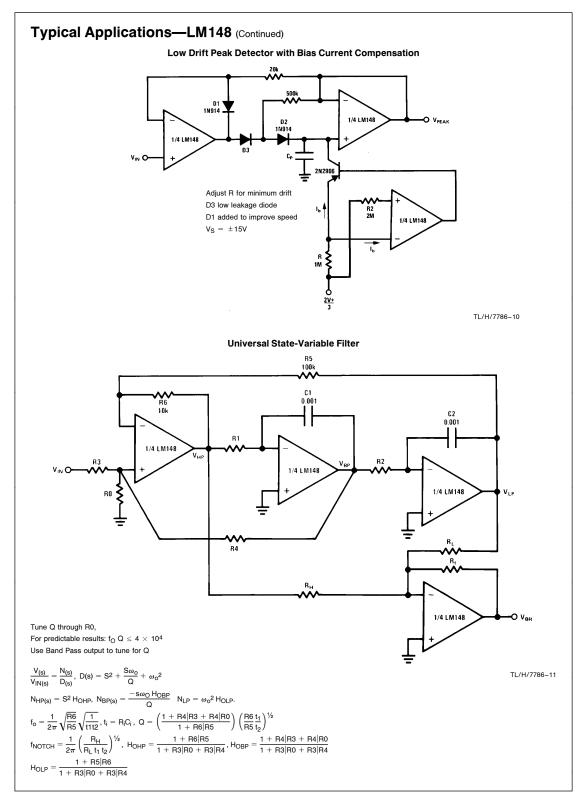
The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplifier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers.

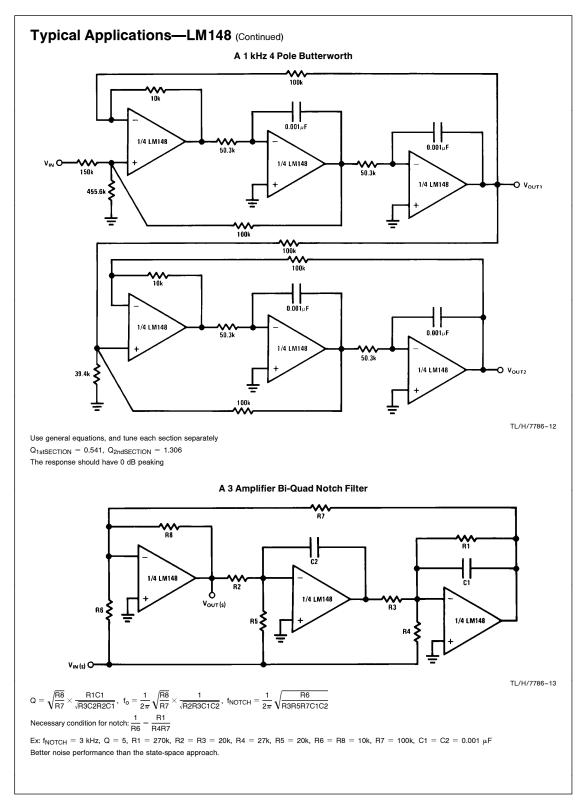
The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current.

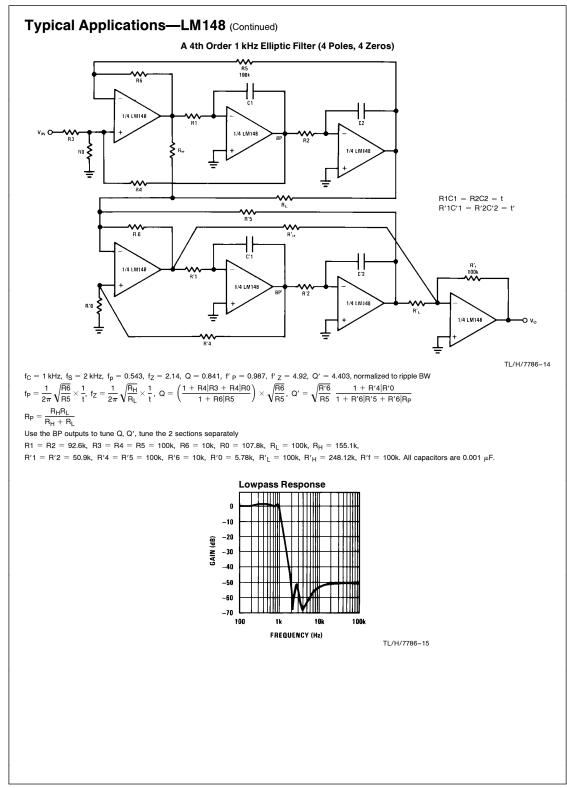

Like the LM741, these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier,

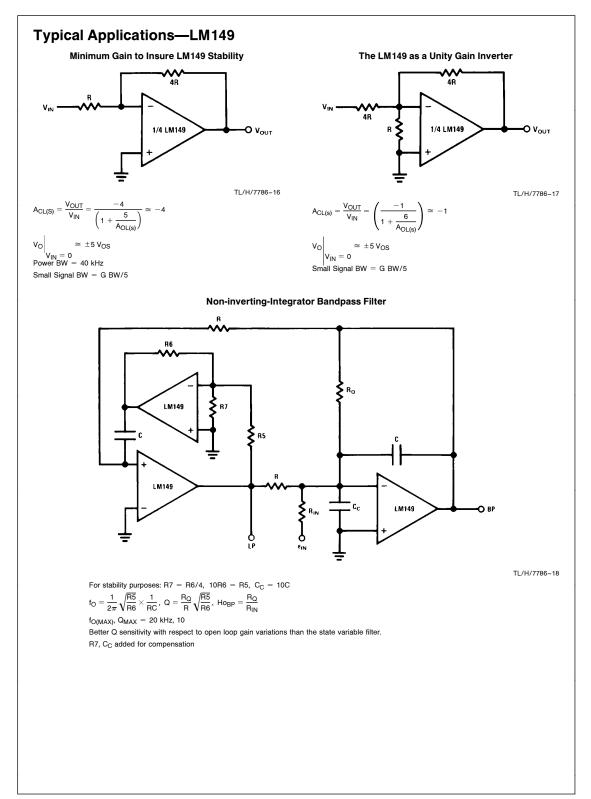

a resistor should be placed between the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.

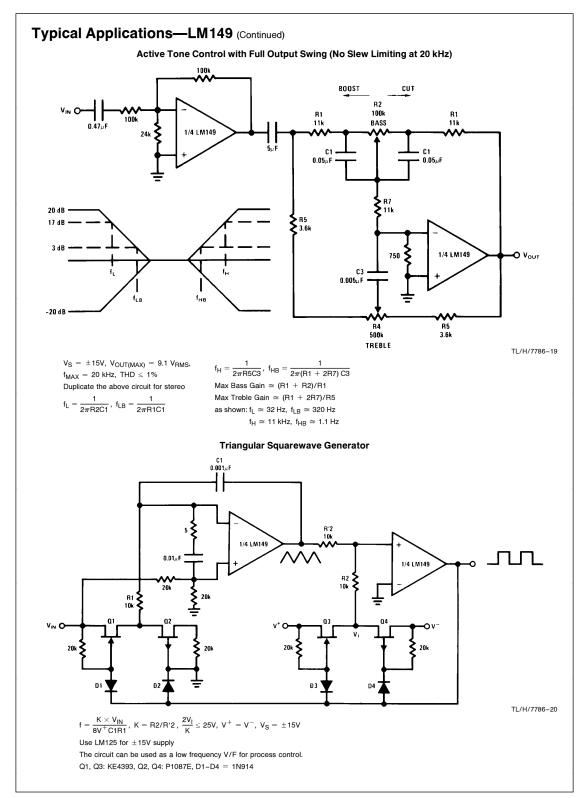

The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.

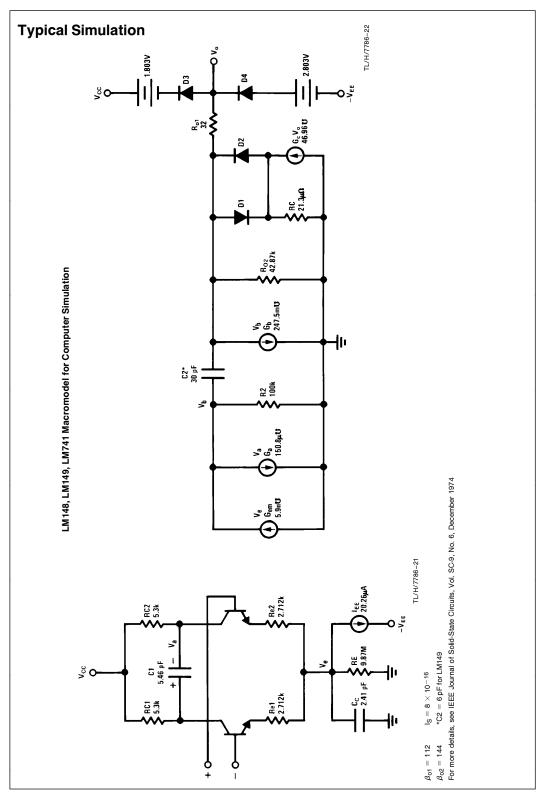

As with most amplifiers, care should be taken lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.

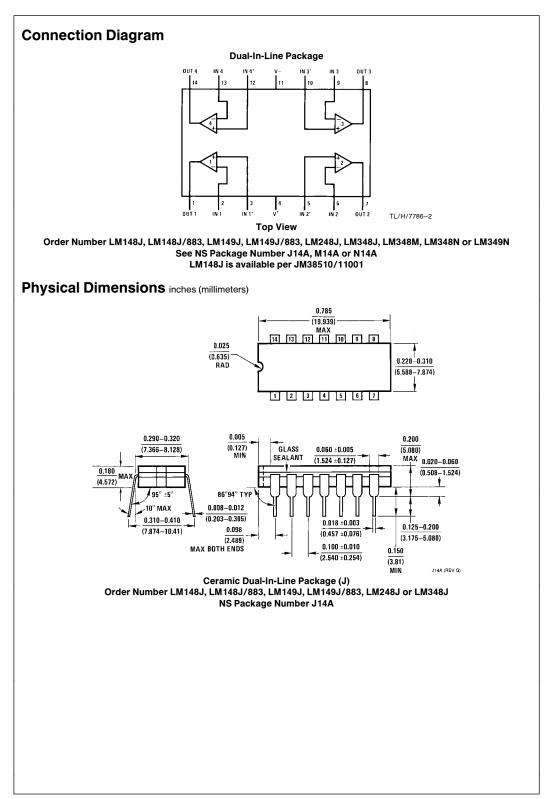

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

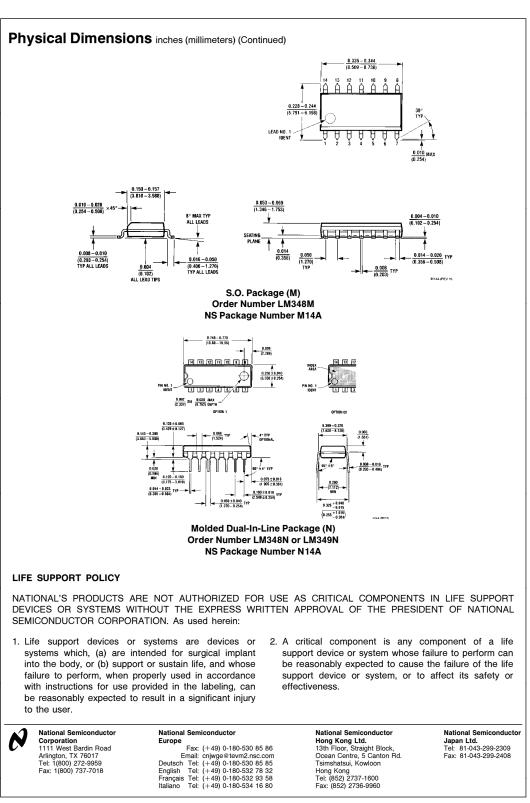












National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.