
User’s Manual

Printed in Japan
©

µPD17201A µPD17227
µPD17203A µPD17228
µPD17204 µPD17P203A
µPD17207 µPD17P204
µPD17225 µPD17P207
µPD17226 µPD17P218

Document No. U12795EJ4V0UM00
(Previous No. IEU-1317B)
Date Published June 1998 N CP(K)

Common Functions

µPD172×× Subseries
4-bit Single-chip Microcontroller

1991

2

SIMPLEHOST and emlC-17K are trademarks of NEC Corporation.

PC/AT is a trademark of IBM Corporation.

Windows is either a registered trademark or a trademark of Microsoft

Corporation in the United States and/or other countries.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions

need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input

levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each

unused pin should be connected to VDD or GND with a resistor, if it is considered to have a

possibility of being an output pin. All handling related to the unused pins must be judged device

by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until

the reset signal is received. Reset operation must be executed immediately after power-on for

devices having reset function.

3

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96.5

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

4

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

J98. 2

5

MAJOR REVISIONS IN THIS EDITION

Page Contents

Throughout µPD17225, 17226, 17227, and 17228 added

Throughout µPD17202A, 17215, 17216, 17217, 17218 and 17P202A deleted

Throughout Assembler changed (AS17K → RA17K)

p. 20 Changes in 1.1 List of Functions

p. 137 Extension instruction added to the table in 15.4 Assembler (RA17K)

Macro instruction

p. 201 A.1 Hardware List modified

p. 202 A.2 Software List modified

The mark shows the major revised points.

6

INTRODUCTION

Targeted reader This manual is intended for the users who understand the functions of the µPD172××
subseries microcontrollers and design application systems using these microcontrollers.

Objective This manual describes the functions common to all the models in the µPD172××
subseries, and will serve as a reference manual when you develop a program for a

µPD172×× subseries microcontrollers.

How to read this manual It is assumed that the readers of this manual possess general knowledge about electric

engineering, logic circuits, and microcomputers.

• To understand the overall functions of the µPD172×× subseries,

→ Read this manual using the Contents.

• To understand the function of an instruction whose mnemonic is known,

→ Use the APPENDIX C INSTRUCTION INDEX.

• To understand the function of the instruction whose mnemonic is not known but

whose function is known,

→ Refer to 15.3 Instruction List by referring to 15.5 Instruction Functions .

• To learn the electrical specifications of the µPD172×× subseries,

→ Refer to the Data Sheet for the respective models.

Legend Data significance : Higher digit on left, lower digit on right

Active low : ××× (bar over pin and signal names)

Memory map address : Top-low, bottom-high

Note : Description of Note in the text.

Caution : Information requiring particular attention

Remark : Supplementary explanation

Number : Binary ... ×××× or ××××B

Decimal number ... ×××× or ××××D

Hexadecimal number ... ××××H

7

Related Documents Refer to the following documents (the numbers in this table indicate the document

number).

• 4-bit single-chip microcontrollers (µPD172×× subseries) (1/2)

Part Number µPD17201A µPD17207 µPD17P207 µPD17203A µPD17P203A µPD17204 µPD17P204

Item

Data sheet U11778J U11777J IC-8089 IC-8303 IC-8089 IC-8303

[U11778E] [U11777E] [U10334E] [IC-2851] [U10334E] [IC-2851]

Instruction table IEM-5537 [IEM-1213] IEM-5544

User’s manual U12795J [U12795E](This manual)

Application note IEA-707 [IEA-1285] — — — —

IEA-757 [IEA-1306] — — — —

(Floating-point arithmetic package)

SE board EEU-763 EEU-762

user’s manual [EEU-1372] [EEU-1371]

Device file EEU-736 EEU-746 EEU-738 EEU-751

user’s manual [EEU-1373] [EEU-1360] [EEU-1350] [EEU-1361]

Microcontrollers for remote controllers X10088J

selection guide [X10088E]

17K series/DTS standard models U10317J

selection guide [U10317E]

RA17K U10305J

user’s manual [U10305E]

IE-17K/IE-17K-ET U10063J

CLICE/CLICE-ET [U10063E]

user’s manual

SIMPLEHOSTTM EEU-723: Introduction [EEU-1336]

user’s manual EEU-724: Reference [EEU-1337]

SIMPLEHOST EEU-5009: Introduction [U10445E]

emlC-17KTM/RA17K compatible EEU-5007: Reference [U10496E]

user’s manual

Project manager U12810J

user’s manual [EEU-1527]

MAKE/CNV17K U10596J

user’s manual [U10596E]

emlC-17K EEU-876

user’s manual [EEU-1511]

LK17K U12518J

user’s manual [U12518E]

DOC17K EEU-5006

user’s manual [EEU-1536]

Remark The number inside [] indicates document number for English version.

8

• 4-bit single-chip microcontrollers (µPD172×× subseries) (2/2)

Part Number µPD17225 µPD17226 µPD17227 µPD17228 µPD17P218

Item

Data sheet U12643J U12217J

[U12643E] [IC-3252]

Instruction table — — — — —

User’s manual U12795J [U12795E] (This manual)

Application note — — — — —

SE board U12372J —

user’s manual (U12372E)

Device file U12136J EEU-925

user’s manual (U12136E) [EEU-1461]

Microcontrollers for remote controllers X10088J

selection guide [X10088E]

17K series/DTS standard models U10317J

selection guide [U10317E]

RA17K U10305J

user’s manual [U10305E]

IE-17K/IE-17K-ET U10063J

CLICE/CLICE-ET [U10063E]

user’s manual

SIMPLEHOST EEU-723: Introduction [EEU-1336]

user’s manual EEU-724: Reference [EEU-1337]

SIMPLEHOST EEU-5009: Introduction [U10445E]

emlC-17K/RA17K compatible EEU-5007: Reference [U10496E]

user’s manual

Project manager U12810J

user’s manual [EEU-1527]

MAKE/CNV17K U10596J

user’s manual [U10596E]

emlC-17K EEU-876

user’s manual [EEU-1511]

LK17K U12518J

user’s manual [U12518E]

DOC17K EEU-5006

user’s manual [EEU-1536]

Remark The number inside [] indicates document number for English version.

9

[MEMO]

10

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 19

1.1 List of Functions ... 20

CHAPTER 2 PROGRAM COUNTER (PC) .. 23

2.1 Program Counter Configuration ... 23
2.2 Program Counter Operations .. 24

2.2.1 On reset ... 24

2.2.2 On branch instruction (BR) execution ... 25

2.2.3 On subroutine call instruction (CALL) execution .. 26

2.2.4 On return instruction (RET, RETSK, or RETI) execution ... 26

2.2.5 On table reference instruction (MOVT) execution ... 27

2.2.6 On skip instruction (SKE, SKGE, SKLT, SKNE, SKT, or SKF) execution 27

2.2.7 On accepting interrupt ... 27

CHAPTER 3 PROGRAM MEMORY (ROM) .. 29

3.1 Program Memory Configuration ... 30
3.2 Program Memory Function .. 31

3.2.1 Storing program ... 31

3.2.2 Table reference .. 37

CHAPTER 4 DATA MEMORY (RAM) .. 41

4.1 Data Memory Configuration .. 42
4.1.1 System register configuration ... 43

4.1.2 Data buffer (DBF) .. 43

4.1.3 General register ... 44

4.1.4 Port register ... 44

CHAPTER 5 STACK ... 45

5.1 Configuration of Stack ... 45
5.2 Function of Stack .. 46
5.3 Address Stack Registers ... 46
5.4 Interrupt Stack Register ... 46
5.5 Stack Pointer (SP) and Interrupt Stack Register .. 47
5.6 Stack Operation When Subroutine or Table Reference Instruction

Is Executed or When Interrupt Is Accepted .. 48
5.6.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed 48

5.6.2 When table reference instruction (MOVT DBF, @AR) is executed 48

5.6.3 When interrupt is accepted or return instruction (RETI) is executed 49

5.7 Nesting Level of Stack, and PUSH and POP Instructions .. 49

11

CHAPTER 6 SYSTEM REGISTERS (SYSREG) .. 51

6.1 Configuration of System Registers .. 51
6.2 Address Register (AR) ... 53

6.2.1 Address register configuration .. 53

6.2.2 Address register function .. 54

6.3 Window Register (WR) ... 55
6.3.1 Window register configuration ... 55

6.3.2 Window register function ... 55

6.4 Bank Register (BANK) .. 56
6.5 Index Register (IX) .. 57

6.5.1 Index register and data memory row address pointer functions ... 58

6.5.2 When MPE = 0, IXE = 0 (no data memory modification) .. 60

6.5.3 When MPE = 1, IXE = 0 (diagonal indirect transfer) ... 62

6.5.4 When MPE = 0, IXE = 1 (data memory address index modification) 64

6.6 General Register Pointer (RP) ... 69
6.6.1 General register pointer configuration .. 69

6.6.2 General register pointer function .. 69

6.7 Program Status Word (PSWORD) ... 71
6.7.1 Program status word configuration ... 71

6.7.2 Program status word function ... 72

6.7.3 Index enable flag (IXE) .. 73

6.7.4 Zero (Z) and compare (CMP) flags ... 73

6.7.5 Carry flag (CY) ... 74

6.7.6 Binary coded decimal flag (BCD) .. 74

6.7.7 Notes on executing arithmetic operation .. 74

6.8 Notes on Using System Registers ... 75
6.8.1 Reserved words of system registers .. 75

6.8.2 Handling system register fixed to “0” .. 77

CHAPTER 7 GENERAL REGISTERS (GR) .. 79

7.1 General Register Configuration .. 79
7.2 General Register Function .. 79

CHAPTER 8 REGISTER FILE (RF) .. 81

8.1 Register File Configuration ... 81
8.1.1 Register file configuration .. 81

8.1.2 Register file and data memory .. 81

8.2 Register File Function .. 82
8.2.1 Register file function .. 82

8.2.2 Control register function .. 83

8.2.3 Register file manipulation instructions .. 84

8.3 Control Registers .. 86
8.4 Notes on Using Register File .. 86

8.4.1 Notes on manipulating control registers (read-only and unused registers) 86

8.4.2 Symbol definition of register file and reserved words .. 87

12

CHAPTER 9 DATA BUFFER (DBF) .. 89

9.1 Data Buffer Configuration ... 89
9.2 Data Buffer Function .. 90

9.2.1 Data buffer and peripheral hardware .. 91

9.2.2 Data transfer with peripheral hardware .. 92

9.2.3 Table reference .. 93

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU) ... 95

10.1 ALU Block Configuration ... 95
10.2 ALU Block Function ... 95

10.2.1 ALU function .. 95

10.2.2 Functions of temporary registers A and B .. 100

10.2.3 Status flip-flop functions .. 100

10.2.4 Binary 4-bit operation .. 100

10.2.5 BCD operation ... 101

10.2.6 ALU block processing sequence ... 102

10.3 Arithmetic Operation (Binary 4-bit addition/subtraction and BCD
addition/subtraction) .. 103
10.3.1 Addition/subtraction when CMP = 0, BCD = 0 ... 104

10.3.2 Addition/subtraction when CMP = 1, BCD = 0 ... 104

10.3.3 Addition/subtraction when CMP = 0, BCD = 1 ... 104

10.3.4 Addition/subtraction when CMP = 1, BCD = 1 ... 105

10.3.5 Notes on using arithmetic operation instruction ... 105

10.4 Logical Operation ... 105
10.5 Bit Testing .. 106

10.5.1 True bit (1) testing ... 107

10.5.2 False bit (0) testing .. 107

10.6 Compare ... 108
10.6.1 Comparison of “Equal to” .. 109

10.6.2 Comparison of “Not equal to” .. 109

10.6.3 Comparison of “Greater than” ... 110

10.6.4 Comparison of “Less than” .. 110

10.7 Rotation Processing ... 111
10.7.1 Right rotation processing .. 111

10.7.2 Left rotation processing ... 112

CHAPTER 11 INTERRUPT FUNCTION .. 113

11.1 Interrupt Control Circuit Configuration ... 113
11.1.1 Interrupt control (EI, DI) ... 113

11.1.2 Interrupt enable flag (IP×××) ... 113

11.1.3 Interrupt request flag (IRQ×××) ... 113

11.2 Interrupt Sequence ... 114
11.2.1 Accepting interrupt ... 114

11.2.2 Returning from interrupt routine .. 118

13

CHAPTER 12 STANDBY FUNCTION ... 121

12.1 Function Outline ... 121
12.2 Setting and Releasing STOP Mode .. 122

12.2.1 Setting STOP mode ... 122

12.2.2 Operation when STOP mode is released ... 122

12.3 Setting and Releasing HALT Mode ... 124
12.3.1 Setting HALT mode .. 124

12.3.2 Operation after releasing HALT mode .. 124

CHAPTER 13 RESET FUNCTION .. 125

13.1 Reset by RESET Pin ... 125
13.2 Watchdog Function (WDOUT output) .. 126

13.2.1 Reset by watchdog timer (connect RESET and WDOUT pins) ... 126

13.2.2 Reset by stack pointer (connect RESET and WDOUT pins) ... 126

13.3 Low Voltage Detection Circuit (connect RESET and WDOUT pins) 126
13.4 Notes on Using INT and RESET Pins .. 126

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM .. 127

14.1 Differences between Mask ROM and One-Time PROM Models 127
14.2 Operation Modes for Writing/Verifying Program Memory .. 129
14.3 How to Write Program Memory ... 130
14.4 How to Read Program Memory ... 131

CHAPTER 15 INSTRUCTION SET ... 133

15.1 Instruction Set Outline ... 133
15.2 Legend .. 134
15.3 Instruction List .. 135
15.4 Assembler (RA17K) Macro instructions .. 137
15.5 Instruction Functions ... 138

15.5.1 Addition instructions .. 138

15.5.2 Subtraction instructions ... 150

15.5.3 Logical operation instructions ... 158

15.5.4 Test instructions ... 164

15.5.5 Compare instructions ... 166

15.5.6 Rotation instruction .. 169

15.5.7 Transfer instructions .. 170

15.5.8 Branch instructions .. 187

15.5.9 Subroutine instructions .. 192

15.5.10 Interrupt instructions .. 197

15.5.11 Other instructions ... 199

14

APPENDIX A DEVELOPMENT TOOLS .. 201

A.1 Hardware List .. 201
A.2 Software List .. 202
A.3 PROM Programmers ... 203

APPENDIX B HOW TO ORDER THE MASK ROM .. 205

APPENDIX C INSTRUCTION INDEX...207

C.1 Instruction Index (by function) ... 207
C.2 Instruction Index (by alphabetic order) ... 208

APPENDIX D REVISION HISTORY .. 209

15

LIST OF FIGURES (1/2)

Fig. No. Title Page

2-1 Program Counter ... 23

2-2 Program Counter Value After Instruction Execution .. 24

2-3 Program Counter Value on Reset .. 24

2-4 Program Counter Value on Direct Branch Instruction Execution .. 25

2-5 Program Counter Value on Indirect Branch Instruction Execution ... 25

2-6 Program Counter Value on Direct Subroutine Call Instruction Execution .. 26

2-7 Program Counter Value on Indirect Subroutine Call Instruction Execution .. 26

3-1 Program Memory Map .. 30

3-2 Direct Subroutine Call (CALL addr) .. 34

3-3 If First Subroutine Address is in Page 1 .. 35

3-4 Indirect Subroutine Call (CALL @AR) .. 36

3-5 Table Referencing (MOVT DBF, @AR) .. 37

4-1 Configuration of Data Memory .. 42

4-2 Configuration of System Register ... 43

4-3 Data Buffer ... 43

4-4 General Register ... 44

4-5 Configuration of Port Register (µPD17225) ... 44

5-1 Configuration of Stack (µPD17207) .. 45

6-1 Location of System Registers on Data Memory .. 51

6-2 Configuration of System Registers (µPD17204) .. 52

6-3 Configuration of Address Register (µPD17226) .. 53

6-4 Address Register of µPD172×× Subseries .. 53

6-5 Address Register Used as Peripheral Circuit .. 54

6-6 Configuration of Window Register .. 55

6-7 Example of Manipulating Window Register ... 55

6-8 Configuration of Bank Register (µPD17207) ... 56

6-9 Bank Register of µPD172×× Subseries .. 56

6-10 Configuration of Index Register (µPD17201A) .. 57

6-11 Example of Operation When MPE = 0, IXE = 0 .. 61

6-12 Example of Operation When MPE = 1, IXE = 0 .. 63

6-13 Example of Operation When MPE = 0, IXE = 1 .. 65

6-14 Example of General Register Indirect Transfer Operation When MPE = 0, IXE = 1 67

6-15 Example of Operation When MPE = 0, IXE = 1 (array processing) ... 68

6-16 Configuration of General Register Pointer (µPD17201A) ... 69

6-17 Configuration of General Register (µPD17201A) .. 70

6-18 Configuration of Program Status Word .. 71

6-19 Functions of Program Status Word .. 72

7-1 Configuration of General Register (µPD17201A) .. 80

16

8-1 Configuration of Register File ... 81

8-2 Relations between Register File and Data Memory .. 82

8-3 Accessing Register File with PEEK or POKE Instruction .. 85

9-1 Location of Data Buffer ... 89

9-2 Configuration of Data Buffer ... 90

9-3 Data Buffer and Peripheral Hardware (µPD17201A) .. 90

10-1 Configuration of ALU Block ... 96

11-1 Accepting Interrupt .. 115

11-2 Interrupt Processing Sequence .. 118

11-3 Returning from Interrupt Processing .. 119

12-1 Operation after Releasing STOP Mode.. 123

12-2 Operation after Releasing HALT Mode .. 124

13-1 Reset Operation by RESET Input .. 125

14-1 Program Memory Writing Sequence .. 130

14-2 Program Memory Reading Sequence .. 131

LIST OF FIGURES (2/2)

Fig. No. Title Page

17

LIST OF TABLES

Table No. Title Page

3-1 The Program Memory of the µPD172×× Subseries ... 29

3-2 Vector Table for µPD17201A, 17207, and 17P207 .. 32

3-3 Vector Table for µPD17203A, 17P203A, 17204, and 17P204 .. 32

3-4 Vector Table for µPD17225, 17226, 17227, 17228 and 17P218 .. 32

4-1 µPD172×× Subseries Data Memory ... 41

5-1 Operation of Stack Pointer .. 47

5-2 Operation When Subroutine Call or Return Instruction Is Executed .. 48

5-3 Operation When Table Reference Instruction Is Executed ... 48

5-4 Operation of Stack When Interrupt Is Accepted and Return Instruction Is Executed (µPD17207) 49

5-5 Operations of PUSH and POP Instructions ... 49

6-1 Data Memory Address Modification by Index Register and Data Memory Row Address Pointer 59

6-2 Status of Compare Flag (CMP) and Set and Reset Conditions of Zero Flag (Z) 73

8-1 Peripheral Hardware of µPD172×× Subseries ... 83

9-1 Peripheral Hardware (µPD17201A) .. 91

10-1 ALU Processing Instructions ... 98

10-2 Results for Binary 4-bit and BCD Operations .. 101

10-3 Arithmetic Operation Instructions ... 103

10-4 Logical Operation Instructions .. 106

10-5 Logical Operation Truth Table ... 106

10-6 Bit Testing Instructions .. 106

10-7 Compare Instructions .. 108

12-1 Status in Standby Mode .. 121

14-1 Pins Used to Write and Verify Program Memory ... 127

14-2 One-Time PROM Models and Corresponding Mask ROM Models .. 127

14-3 Differences between µPD17P203A and µPD17203A .. 128

14-4 Differences between µPD17P204 and µPD17204... 128

14-5 Differences between µPD17P207, µPD17201A, and µPD17207 ... 128

14-6 Differences between µPD17P218, µPD17225, 17226, 17217 and 17228 ... 128

14-7 Selecting Operation Modes .. 129

18

CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

The µPD17201A, 17203A, 17204, 17207, 17225, 17226, 17227, and 17228 are microcontrollers for infrared remote

controllers, integrating a CPU, ROM, RAM, I/O ports, timer, and remote controller carrier generator on a single chip.

The µPD17P203A, 17P204, 17P207, and 17P218 are one-time PROM models suitable for evaluating programs

at system development or for small-scale production.

19

CHAPTER 1 GENERAL

1.1 List of Functions

• 4-bit single-chip microcontrollers (µPD172×× subseries) (1/2)

Item µPD17201A µPD17207 µPD17203A µPD17204

Part Number

ROM capacity 3072 × 16 bits 4096 × 16 bits 4096 × 16 bits 7936 × 16 bits

RAM capacity 336 × 4 bits 336 × 4 bits

Static RAM None 4096 × 4 bits 2048 × 4 bits

LCD controller/driver 136 segments MAX. None

Carrier generator circuit (REM) for Provided (LED output is active-high) Provided (LED output is active-low)

infrared remote controller

Infrared remote controller reception None Provided

preamplifier

Number of I/O ports 19 28

External interrupt (INT) 1 (rising-edge detection) 1 (rising and falling-edge detection)

A/D converter 4 channels (8-bit A/D) None

Timer
2 channels

8-bit timer
4 channels

8-bit timer: 3 channels

Watch timer Watch timer

Watchdog timer Provided (WDOUT output)

Low-voltage detection circuit None

Serial interface 1 channel 1 channel

Stack level 5 levels 7 levels

Minimum instruction execution time 4 µs (at 4 MHz)

Operating supply voltage • 2.2 to 5.5 V (at 4 MHz)

• 2.0 to 5.5 V (at 32 kHz)

Package 80-pin plastic QFP (14 × 20 mm) 52-pin plastic QFP (14 × 14 mm)

One-time PROM model µPD17P207 µPD17P203A µPD17P204

Caution To use the NEC transmission format, apply to NEC for the custom code.

20

CHAPTER 1 GENERAL

• 4-bit single-chip microcontrollers (µPD172×× subseries) (2/2)

Item µPD17225 µPD17226 µPD17227 µPD17228

Part Number

ROM capacity 2048 × 16 bits 4096 × 16 bits 6144 × 16 bits 8192 × 16 bits

RAM capacity 111 × 4 bits 223 × 4 bits

Static RAM None

LCD controller/driver None

Carrier generator circuit (REM) for Provided (no LED)

infrared remote controller

Infrared remote controller reception None

preamplifier

Number of I/O ports 20

External interrupt (INT) 1 (rising-edge and falling-edge detection)

A/D converter None

Timer
2 channels

 8-bit timer

 Basic interval timer

Watchdog timer Provided (WDOUT output)

Low-voltage detection circuitNote Provided (WDOUT output: mask option)

Serial interface None

Stack level 5 levels

Minimum instruction • 2 µs (at 8 MHz : high-speed mode)

execution time • 4 µs (at 8 MHz : normal mode)

Operating supply voltage • 2.2 to 3.6 V (at 8 MHz : high-speed mode)

• 2.0 to 3.6 V (at 8 MHz : normal mode)

Package • 28-pin plastic SOP (375 mil)

• 28-pin plastic shrink DIP (400 mil)

One-time PROM model µPD17P218

Note Although the circuit configuration is the same, the electrical characteristics differ depending on the product.

Caution To use the NEC transmission format, apply to NEC for the custom code.

21

CHAPTER 1 GENERAL

[MEMO]

22

CHAPTER 2 PROGRAM COUNTER (PC)

CHAPTER 2 PROGRAM COUNTER (PC)

The program counter is used to specify an address in the program memory.

2.1 Program Counter Configuration

The program counter is a binary counter consisting of up to 13 bits, as shown in Figure 2-1.

The contents of the 13-bit binary counter are incremented each time an instruction is executed.

The program counter transfers data with the address stack and address register in 16-bit units.

At this time, the bits in the program counter that exceed the program memory address range are fixed at 0.

Figure 2-1. Program Counter

PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

Page

PC

 PD17225µ

 PD17201A, 17203A, 17P203A, 17207, 17P207, 17226µ

 PD17204, 17P204, 17P218, 17227, 17228µ

MSB LSB

23

CHAPTER 2 PROGRAM COUNTER (PC)

2.2 Program Counter Operations

Usually, the program counter contents are automatically incremented each time an instruction executed.

When the reset signal has been input, if a branch, subroutine call, return, or table reference instruction has been

executed, and if an interrupt has been accepted, a specified value is set in the program counter.

The following 2.2.1 through 2.2.7 describe the program counter operations, when each of the above instructions

has been executed.

Figure 2-2. Program Counter Value After Instruction Execution

Bit of PC Program Counter Value

Instruction PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

On reset 0 0 0 0 0 0 0 0 0 0 0 0 0

BR addr Value specified by instruction

CALL addr 0 0 Value specified by instruction

BR @AR

CALL @AR Address register contents

(MOVT DBF, @AR)

RET

RETSK Address stack register contents, specified by stack pointer (return address)

RETI

On accepting interrupt Interrupt vector address

2.2.1 On reset

When the RESET pin is made low, the program counter contents are initialized to 0000H.

Figure 2-3. Program Counter Value on Reset

0 0 0 0 0 0 0 0 0 0 0 0 0

All bits are cleared to 0

MSB LSB

24

CHAPTER 2 PROGRAM COUNTER (PC)

2.2.2 On branch instruction (BR) execution

Available branch instructions are a direct branch instruction (BR addr), whose branch destination is described as

the operand of the instruction, and an indirect branch instruction (BR @AR), whose destination address is specified

by the address register.

In Figure 2-4 below, an address specified for the direct branch instruction is set in the program counter.

Figure 2-4. Program Counter Value on Direct Branch Instruction Execution

Figure 2-5 shows that the value of the address register is set by the indirect branch instruction in the program

counter.

Figure 2-5. Program Counter Value on Indirect Branch Instruction Execution

PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

Value specified by direct branch instruction

PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

AR12 AR11 AR10 AR9 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

25

CHAPTER 2 PROGRAM COUNTER (PC)

2.2.3 On subroutine call instruction (CALL) execution

Available subroutine call instructions are a direct subroutine call instruction (CALL addr), whose destination is

directly described as the operand, and an indirect subroutine call instruction (CALL @AR), whose destination is

specified by the address register.

When the direct subroutine call instruction has been executed, the program counter value is pushed to the address

stack, and the address, described as the operand of the instruction, is set in the program counter. The address range

that can be specified by the direct subroutine call instruction is in page 0 of the program memory, i.e., from 0000H

to 07FFH.

Figure 2-6. Program Counter Value on Direct Subroutine Call Instruction Execution

After the program counter value has been pushed to the stack address, by executing the indirect subroutine call

instruction, the address register value is set in the program counter.

Figure 2-7. Program Counter Value on Indirect Subroutine Call Instruction Execution

2.2.4 On return instruction (RET, RETSK, or RETI) execution

The value (address) pushed to the address stack is restored to the program counter, by executing a return

instruction (RET, RETSK, or RETI), and the instruction at that address is executed.

0 0 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

Value specified by branch instruction0

PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

AR12 AR11 AR10 AR9 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

26

CHAPTER 2 PROGRAM COUNTER (PC)

2.2.5 On table reference instruction (MOVT) execution

By executing the table reference instruction (MOVT DBF,@AR), the program counter value is pushed to the address

stack, and the address register value is set in the program counter. The program memory contents addressed by

this value are read to the data buffer (DBF). After the program memory contents have been read, the value pushed

to the address stack is restored to the program counter.

Because of these operations, the table reference instruction consumes one level of the stack. Therefore, when

executing this instruction, pay attention to the stack level nesting.

2.2.6 On skip instruction (SKE, SKGE, SKLT, SKNE, SKT, or SKF) execution

When the skip condition of the skip instruction (SKE, SKGE, SKLT, SKNE, SKT, or SKF) has been satisfied, the

instruction next to the skip instruction is executed as a no-operation (NOP) instruction. Consequently, the number

of instructions to be executed and the execution time do not vary, when the skip instruction has been executed,

regardless of whether or not the skip condition is satisfied.

2.2.7 On accepting interrupt

When an interrupt has been accepted, the program counter value is pushed to the address stack, and the vector

address corresponding to each interrupt is set in the program counter.

27

CHAPTER 2 PROGRAM COUNTER (PC)

[MEMO]

28

CHAPTER 3 PROGRAM MEMORY (ROM)

CHAPTER 3 PROGRAM MEMORY (ROM)

The program memory configuration for the µPD172×× subseries is as follows:

Table 3-1. The Program Memory of the µPD172×× Subseries

Part Number ROM Capacity ROM Address

µPD17225 2048 × 16 bits 0000H-07FFH

µPD17201A 3072 × 16 bits 0000H-0BFFH

µPD17203A 4096 × 16 bits 0000H-0FFFH

µPD17207

µPD17226

µPD17P203A

µPD17P207

µPD17227 6144 × 16 bits 0000H-17FFH

µPD17204 7936 × 16 bits 0000H-1EFFH

µPD17P204

µPD17228 8192 × 16 bits 0000H-1FFFH

µPD17P218

The program memory stores such things as the program, interrupt vector table, and fixed data table.

The program memory is addressed by the program counter.

29

CHAPTER 3 PROGRAM MEMORY (ROM)

3.1 Program Memory Configuration

Figure 3-1 shows the program memory map. All the addresses of the program memory can be specified by the

BR addr, BR @AR, CALL @AR, MOVT DBF, and @AR instructions. However, only addresses 0000H-07FFH can

be specified as the subroutine entry address of the CALL addr instruction.

Figure 3-1. Program Memory Map

Note The vector address differ depending on the product.

0000H

Address

××××HNote

07FFH
0800H

0BFFH

0FFFH

1FFFH

(PD17225)µ

Vector table

(PD17201A)µ

(PD17203A, 17P203A, 17207, 17P207, 17226)µ

17FFH (PD17227)µ

1EFFH (PD17204, 17P204)µ

(PD17228, 17P218)µ

16 bits

Page 0

Page 1

Page 2

Page 3

CALL addr
instruction
subroutine entry
address

BR addr instruction
branch address

BR @AR instruction
branch address
CALL @AR instruction

Subroutine entry
address

MOVT DBR, @AR instruction
table reference address

30

CHAPTER 3 PROGRAM MEMORY (ROM)

3.2 Program Memory Function

The program memory has the following two major functions:

(1) Storing the program

(2) Storing constant data

A program is a collection of “instructions” that directs the central processing unit (CPU) on how to operate. The

CPU sequentially performs processing in accordance with the instructions described in a program. In other words,

the CPU reads instructions from the program stored in the program memory, and executes processing in accordance

with the instructions.

All instructions are 16 bits, 1 word long. Therefore, one instruction can be stored in one address in a 16-bit program

memory.

Constant data is predetermined data, such as a display pattern. The constant data can read the contents of the

program memory to the data buffer (DBF) on the data memory by using the MOVT instruction, which is exclusively

used for reading constant data. Reading constant data from a program memory like this is called “table reference”.

Because the program memory is a read-only memory (ROM), its contents cannot be rewritten by instructions.

3.2.1 Storing program

The program stored in the program memory is usually executed on an address-by-address basis starting from

address 0000H. However, to execute another program when a certain condition is satisfied, the program execution

flow must be changed. To do this, a branch instruction (BR) is used.

If it is necessary to execute the same program repeatedly, and if the same program is described each time that

program is to be executed, it will be inefficient. In this case, therefore, only one program is described. It is called

by a CALL instruction whenever necessary. This program is known as a “subroutine”. As opposed to the subroutine,

the program normally executed is called the “main routine”.

If there is a program that is to be executed independently from the program execution flow, when a certain condition

is satisfied, a function called an interrupt is used. By using the interrupt function, execution can be branched to a

predetermined address (called a vector address) independently from the program execution flow, when a certain

condition has been satisfied.

(1) Vector table

The addresses to which the program execution are to branched (vector address), when the reset signal has

been input or an interrupt has occurred, are listed in Tables 3-2 through 3-5.

31

CHAPTER 3 PROGRAM MEMORY (ROM)

Table 3-2. Vector Table for µPD17201A, 17207, and 17P207

Vector Address Interrupt Source

0000H Reset

0001H Serial interface interrupt

0002H Watch timer interrupt

0003H External input (INT) interrupt

0004H 8-bit timer interrupt

Table 3-3. Vector Table for µPD17203A, 17P203A, 17204, and 17P204

Vector Address Interrupt Source

0000H Reset

0001H XRAM address interrupt

0002H Serial interface interrupt

0003H Watch timer interrupt

0004H External input (INT) interrupt

0005H 10-bit timer interrupt (TM1)

0006H 8-bit timer interrupt (TM0)

0007H 16-bit timer interrupt (TM2)

0008H Envelope circuit output interrupt

Table 3-4. Vector Table for µPD17225, 17226, 17227, 17228 and 17P218

Vector Address Interrupt Source

0000H Reset

0001H Basic interval timer interrupt

0002H External input (INT) interrupt

0003H 8-bit timer interrupt

32

CHAPTER 3 PROGRAM MEMORY (ROM)

(2) Direct branch

The direct branch instruction (BR addr) specifies a program memory address, to which the execution is to be

branched, using the low-order 2 bits in the op code for the instruction and 11 bits of the operand. Therefore,

the direct branch instruction can branch the execution to any of the program memory addresses.

(3) Indirect branch

The indirect branch instruction (BR @AR) branches the execution to an address indicated by the address

register (AR). Therefore, this instruction can branch the execution to any of the program memory addresses.

Also, refer to 6.2 Address Register .

(4) Direct subroutine call

The direct subroutine call instruction (CALL addr) specifies the program memory address from which a

subroutine is to be called, using the 11 operand bits for the instruction. Therefore, to use the direct subroutine

call instruction, the address to be called, i.e., the first address in the subroutine to be called, must be in page

0 (addresses 0000H-07FFH). A subroutine in the other pages (addresses 0800H-1FFFH) cannot be called.

However, the direct subroutine call instruction itself, or a subroutine return instruction (RET or RETSK), can

be in a page other than page 0.

Example 1 If the first address in a subroutine is in page 0

As long as the first address in a subroutine is in page 0, as shown in Figure 3-2, the call

instruction that calls this subroutine and the return instruction can be in any page. As long as

the first address in the subroutine is in page 0, the CALL instruction can be used regardless

of the page.

However, if the first address in the subroutine cannot be placed in page 0, use the technique

shown in Example 2 .

33

CHAPTER 3 PROGRAM MEMORY (ROM)

Figure 3-2. Direct Subroutine Call (CALL addr)

Note The program memory of the µPD17225 consists of addresses 0000H-07FFH.

SUB1 :

RET

SUB2 :

RET

CALL SUB1

Program memoryAddress

0000H

CALL SUB1

CALL SUB2

07FFHNote

0800H

0FFFH

PAGE0

PAGE1

34

CHAPTER 3 PROGRAM MEMORY (ROM)

Example 2 If the first address in a subroutine is in page 1

If the first address in the subroutine is in page 1, a branch instruction (BR) should be placed

in page 0, through which the subroutine (SUB1) in page 1 is to be called, as shown in Figure

3-3.

Figure 3-3. If First Subroutine Address is in Page 1

Note The program memory of the µPD17225 consists of addresses 0000H-07FFH.

SUB2 :

RET

CALL SUB1

Program memoryAddress

0000H

CALL SUB1

07FFHNote

0800H

0FFFH

PAGE0

PAGE1

SUB1 : BR SUB2

35

CHAPTER 3 PROGRAM MEMORY (ROM)

(5) Indirect subroutine call

The indirect subroutine call (CALL @AR) instruction uses the address register (AR) value as the address from

which a subroutine is to be called. Therefore, this instruction can call a subroutine from any of the program

memory addresses.

Also refer to 6.2 Address Register (AR) .

Figure 3-4. Indirect Subroutine Call (CALL @AR)

Note The program memory of the µPD17225 consists of addresses 0000H-07FFH.

SUB2 :

SUB3 :

Program memoryAddress

0000H

07FFHNote

0800H

0FFFH

PAGE0

PAGE1

MOV AR0, # .DL.SUB2 AND 0FH

MOV AR1, # .DL.SUB2 SHR 4 AND 0FH

MOV AR2, # .DL.SUB2 SHR 8 AND 0FH

MOV AR3, # .DL.SUB2 SHR 12 AND 0FH

CALL @AR

RET

············

MOV AR0, # .DL.SUB3 AND 0FH

MOV AR1, # .DL.SUB3 SHR 4 AND 0FH

MOV AR2, # .DL.SUB3 SHR 8 AND 0FH

MOV AR3, # .DL.SUB3 SHR 12 AND 0FH

CALL @AR

36

CHAPTER 3 PROGRAM MEMORY (ROM)

3.2.2 Table reference

Table referencing is used to reference constant data in the program memory.

When the table reference instruction (MOVT DBF, @AR) is executed, the contents of the program memory address

specified by the address register are stored in the data buffer.

Since the contents of a program memory address are 16 bits wide, constant data that is stored in the data buffer

by the MOVT instruction is also 16 bits wide. By using the address register, any program memory address can be

table-referenced.

When table referencing is performed, one stack level is temporarily used. Therefore, pay attention to the stack

level.

Also refer to 6.2 Address Register (AR) and 4.1.2 Data buffer (DBF) .

Figure 3-5. Table Referencing (MOVT DBF, @AR)

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

DBF3 DBF2 DBF1 DBF0

Data Buffer

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

AR3 AR2 AR1 AR0

Address Register

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Program Memory

Constant data

Reads 16-bit data

Specifies table address

37

CHAPTER 3 PROGRAM MEMORY (ROM)

(1) Constant table

The following is an example of a table reference program that references a constant table:

Example Program that reads the address OFFSET value of the constant data table .

OFFSET MEM 0.00H ; Stores offset address

BANK0

MOV RPH, #0 ; Sets row address 7 in register pointer

MOV RPL, #7 SHL 1

ROMREF :

BANK0 ; Sets first address in table

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

ADD AR0, OFFSET ; Adds offset address

ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

MOVT DBF, @AR ; Executes table referencing

Program

TABLE :

DW 0001H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

DW 0400H

DW 0800H

DW 1000H

DW 2000H

DW 4000H

DW 8000H

END

~

38

CHAPTER 3 PROGRAM MEMORY (ROM)

(2) Branch destination table

The following shows an example of a table reference program for the branch destination table:

Example Program that branches to the address indicated by the address OFFSET value

OFFSET MEM 0.00H ; Stores offset address

BANK0

MOV RPH, #0 ; Sets row address 7 in register pointer

MOV RPL, #7 SHL 1

ROMREF :

BANK0 ; Sets first address for table

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

ADD AR0, OFFSET ; Adds offset address

ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

MOVT DBF, @AR ; Executes table referencing

PUT AR, DBF

BR @AR

TABLE :

DW 0001H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

DW 0400H

DW 0800H

DW 1000H

DW 2000H

DW 4000H

DW 8000H

END

39

CHAPTER 3 PROGRAM MEMORY (ROM)

[MEMO]

40

CHAPTER 4 DATA MEMORY (RAM)

CHAPTER 4 DATA MEMORY (RAM)

The data memory stores data for arithmetic and control operations. The data can be written to or read from this

memory by an instruction.

The data memory capacity list for the µPD172×× subseries is as follows:

Table 4-1. µPD172×× Subseries Data Memory

 Part Number RAM Capacity

µPD17225 111 × 4 bits

µPD17226 (BANK0)

µPD17227 223 × 4 bits

µPD17228 (BANK0, BANK1)

µPD17P218

µPD17201A 336 × 4 bits

µPD17203A (BANK0-BANK2)

µPD17P203A

µPD17204

µPD17P204

µPD17207

µPD17P207

41

CHAPTER 4 DATA MEMORY (RAM)

4.1 Data Memory Configuration

Figure 4-1 shows the configuration of the data memory.

The data memory is managed with a conception called “bank”. The µPD1712× and 1713× have only bank 0.

Each bank of the data memory is assigned addresses with 4 bits, or a “nibble” of the memory corresponding to

one address.

A data memory address is represented by 7 bits with the high-order 3 bits called a “row address” and the low-order

4 bits a “column address”. For example, address 1AH (0011010B) consists of a row address of 1H (001B) and a

column address of AH (1010B).

The data memory is divided by function into the blocks described in 4.1.1 through 4.1.4.

Figure 4-1. Configuration of Data Memory

1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 74H-7FH are for system register regardless of bank

Data buffer (DBF)

(Bank n)

1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 74H-7FH are for system register regardless of bank

Data buffer (DBF)

(Bank 1)

R
ow

 a
dd

re
ss

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Data buffer (DBF)

(Bank 0)

74H-7FH are for system register regardless of bank

42

CHAPTER 4 DATA MEMORY (RAM)

4.1.1 System register configuration

The system register (SYSREG) consists of 12 nibbles assigned to addresses 74H-7FH of the data memory.

SYSREG is assigned independently of the bank; therefore, the same system register exists at addresses 74H through

7FH of any bank.

Figure 4-2 shows the configuration of the system register.

Figure 4-2. Configuration of System Register

System register (SYSREG)

Address 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

Symbol

4.1.2 Data buffer (DBF)

Data buffer (DBF) is assigned to addresses 0CH-0FH in the bank 0 in the data memory.

The data buffer is used for transferring data with peripheral hardware (by the PUT and GET instructions) and for

table referencing (MOVT instruction).

Figure 4-3. Data Buffer

Address register

(AR)

Window

register

(WR)

Bank

register

(BANK)

Program

status word

(PSWORD)

General
register
pointer
(RP)

Index register (IX)

Data memory row
pointer address (MP)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

(Bank 0)

R
ow

 a
dd

re
ss

Column address

DBF3 DBF2 DBF1 DBF0

74H-7FH are for system register regardless of bank

← Data buffer

(DBF)

43

CHAPTER 4 DATA MEMORY (RAM)

4.1.3 General register

The general register (GR) consists of 16 nibbles specified by any row address of the data memory.

The row address is specified by the general register pointer (RP) in the system register (SYSREG).

Figure 4-4 shows the configuration of the general register.

Figure 4-4. General Register

1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 74H-7FH are for system register regardless of bank

Data buffer (DBF)

(Bank n)

1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 74H-7FH are for system register regardless of bank

Data buffer (DBF)

(Bank 1)

R
ow

 a
dd

re
ss

General-purpose
registers when
RP = 02H (RPH = 0,
RPL = 4)

←

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

(Bank 0)

Column address

Data buffer (DBF)

74H-7FH are for system register regardless of bank

4.1.4 Port register

The port register consists of 5 nibbles (5 × 4 bits) assigned to addresses 6FH through 73H of each bank of the

data memory.

Figure 4-5 shows the configuration of the port register.

Figure 4-5. Configuration of Port Register (µPD17225)

Address 6FH 70H 71H 72H 73H

P0E P0A P0B P0C P0D

P P P P P P P P P P P P P P P P P P P P

Symbol 0

E E E E A A A A B B B B C C C C D D D D

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

44

CHAPTER 5 STACK

CHAPTER 5 STACK

Two types of stacks are available: an address stack that stores the contents of the program counter, and an interrupt

stack that stores the contents of the system register. The address stack is a register to which the return address of

the program is saved when a subroutine is called or when an interrupt is accepted. The interrupt stack is a register

that saves part or all of the contents of the system register when an interrupt is accepted.

5.1 Configuration of Stack

Figure 5-1 shows the configuration of the stack of the µPD17207 as an example. This stack consists of a stack

pointer (SP), which is a 3-bit binary counter, five 11-bit address stack registers, and three 7-bit interrupt stack registers.

Figure 5-1. Configuration of Stack (µPD17207)

Remark µPD17204 and 17P204 have seven address stack registers, 0H-6H.

Address Stack Register

b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Address stack register 0

Address stack register 1

Address stack register 2

Address stack register 3

Address stack register 4

Undefined

Undefined

Undefined

b2 b1 b0

SPb2 SPb1 SPb0

Stack Pointer
(SP)

0H

1H

2H

3H

4H

5H

6H

7H

When the contents
of the stack
pointer becomes
6H-7H, the WDOUT
pin goes low.

BCDSK0 CMPSK0 CYSK0 ZSK0 IXESK0

Interrupt Stack Register
(INTSK)

0H

BCDSK1 CMPSK1 CYSK1 ZSK1 IXESK11H

BCDSK2 CMPSK2 CYSK2 ZSK2 IXESK22H

BANKSK0

BANKSK1

BANKSK2

45

CHAPTER 5 STACK

5.2 Function of Stack

The stack is used to save the return address when a subroutine call instruction or table reference instruction is

executed. When an interrupt is accepted, the return address of the program and the contents of the program status

word (PSWORD) are automatically saved to the stack.

5.3 Address Stack Registers

The address stack registers save the value of the program counter (PC) plus 1, i.e., the return address when the

first instruction cycle of a subroutine call (CALL addr, CALL @AR) or table reference (MOVT DBF, @AR) instruction

is executed. When a stack manipulation instruction (PUSH AR) is executed, the contents of the address register (AR)

are saved to an address stack register. The address stack register that stores data is specified by the value of the

stack pointer (SP) minus 1 when any of the above instructions is executed.

When the second instruction cycle of a subroutine return (RET, RETSK), interrupt return (RETI), or table reference

(MOVT DBF, @AR) instruction is executed, the contents of the address stack register specified by the stack pointer

are restored to the program counter, and the value of the stack pointer is incremented by 1. When a stack manipulation

instruction (POP AR) is executed, the value of the address stack register specified by the stack pointer is transferred

to the address register, and the value of the stack pointer is incremented by 1.

If a subroutine call or interrupt is executed exceeding 5 levelsNote , the WDOUT pin goes low .

Note In case of µPD17204 and 17P204, 7 levels

5.4 Interrupt Stack Register

This section describes the interrupt stack register of the µPD17207 as an example.

The interrupt stack register consists of 3 × 7 bits as shown in Figure 5-1.

When an interrupt is accepted 7 bits, o.e., five flags (BCD, CMP, CY, Z, and IXE) of the program status word

(PSWORD) in the system register (SYSREG) and bank registers are saved to this register. When an interrupt return

instruction (RETI) is later executed, the contents of the interrupt stack register are restored to the program status word.

The interrupt stack register saves data each time an interrupt is accepted.

If an interrupt is accepted exceeding 3 levels, the first data saved to the interrupt stack register is lost.

Remark All the bits of PSWORD and BANK are automatically cleared to “0” after the contents of PSWORD and

BANK have been saved to the interrupt stack register.

46

CHAPTER 5 STACK

5.5 Stack Pointer (SP) and Interrupt Stack Register

The stack pointer (SP) is a 3-bit binary counter that specifies the addresses of five address stack registers as shown

in Figure 5-1. The stack pointer is located at address 01H of the register file.

The value of the stack pointer is decremented by 1 when the first instruction cycle of a subroutine call (CALL addr,

CALL @AR) or table reference (MOVT DBF, @AR) instruction is executed, when a stack manipulation instruction

(PUSH AR) is executed, or when an interrupt is accepted, as indicated in Table 5-1; it is incremented by 1 when the

second instruction cycle of a subroutine return (RET, RETSK) or table reference (MOVT DBF, @AR) instruction is

executed, or when a stack manipulation instruction (POP AR) or interrupt return instruction (RETI) is executed. When

an interrupt is accepted, the value of the interrupt stack register is also decremented by 1. The value of the interrupt

stack register is incremented by 1 only when the interrupt return (RETI) instruction is executed.

Table 5-1. Operation of Stack Pointer

Instruction Stack Pointer (SP) Value
Counter of Interrupt

Stack Register

CALL addr

CALL @AR

MOVT DBF, @AR –1 0

(1st instruction cycle)

PUSH AR

Accepting interrupt –1 –1

RET

RETSK

MOVT DBF, @AR +1 0

(2nd instruction cycle)

POP AR

RETI +1 +1

Because the stack pointer is a 3-bit binary counter, as described above, it can take eight values: 0H through 7H.

However, because only five address stack registers are available, the WDOUT pin goes low if the value of the stack

pointer is 6 or more, or if the stack pointer value becomes –1 to –7 due to execution of a CALL or MOVT instruction,

or due to acknowledgement of an interrupt, when the stack pointer value is 0.

Since the stack pointer is located on the register file, its value can be directly read or data can be written to the

stack pointer by manipulating the register file with the PEEK or POKE instruction. Although the value of the stack

pointer is changed at this time, the value of the address stack register is not affected.

The stack pointer is set to 5 on reset.

Remark µPD17204 and 17P204 have seven address stack registers. The stack pointers are set to 7 on reset.

47

CHAPTER 5 STACK

5.6 Stack Operation When Subroutine or Table Reference Instruction Is Executed or When
Interrupt Is Accepted

The following Paragraphs 5.6.1 through 5.6.3 describe the operations of the stack.

5.6.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed

Table 5-2 shows the operations of the stack pointer (SP), address stack registers, and program counter (PC) when

the subroutine call or return instruction is executed.

Table 5-2. Operation When Subroutine Call or Return Instruction Is Executed

Instruction Operation

<1> Increments value of program counter (PC) by 1

CALL addr
<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) to address stack register specified by stack pointer (SP)

<4> Transfers value specified by operand (addr) of instruction to program counter

RET <1> Restores value of address stack register specified by stack pointer (SP) to program counter (PC)

RETSK <2> Increments value of stack pointer (SP) by 1

When the RETSK instruction is executed, the first instruction after restoration is treated as a no-operation (NOP)

instruction.

5.6.2 When table reference instruction (MOVT DBF, @AR) is executed

Table 5-3 shows the operations when the table reference instruction is executed.

Table 5-3. Operation When Table Reference Instruction Is Executed

Instruction Cycle Operation

〈1〉 Increments value of program counter (PC) by 1

〈2〉 Decrements value of stack pointer (SP) by 1

First 〈3〉 Saves value of program counter (PC) to address stack register specified by

stack pointer (SP)

MOVT DBF, @AR
〈4〉 Transfers value of address register (AR) to program counter (PC)

〈5〉 Transfers contents of program memory (ROM) specified by program counter

(PC) to data buffer (DBF)

Second 〈6〉 Restores value of address stack register specified by stack pointer (SP) to

program counter (PC)

〈7〉 Increments value of stack pointer (SP) by 1

48

CHAPTER 5 STACK

5.6.3 When interrupt is accepted or return instruction (RETI) is executed

Table 5-4 shows the operation of the stack of the µPD17207 when an interrupt is accepted and when the return

instruction is executed.

Table 5-4. Operation of Stack When Interrupt Is Accepted and Return Instruction Is Executed (µPD17207)

Instruction Operation

<1> Increments value of program counter (PC) by 1

However, if branch (BR) or subroutine call (CALL) instruction is executed when interrupt is

accepted, address of program memory (ROM) to which execution branches or from which

subroutine is called is loaded to PC

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) to address stack register specified by stack pointer (SP)

<4> Saves BCD, CMP, CY, Z, and IXE flags of PSWORD and BANK to interrupt stack register

<5> Transfers vector address to program counter (PC)

<1> Restores value of interrupt stack register to BCD, CMP, CY, Z, and IXE flags of PSWORD and

BANK
RETI

<2> Restores value of address stack register specified by stack pointer (SP) to program counter (PC)

<3> Increments stack pointer (SP) by 1

5.7 Nesting Level of Stack, and PUSH and POP Instructions

The stack pointer (SP) operates as a 3-bit counter whose value is incremented or decremented by 1 when the

subroutine call or return instruction is executed. Therefore, if the CALL or MOVT instruction is executed or an interrupt

is accepted while the value of the stack pointer is 0H, and the value of the stack pointer is decremented by 1 to 7H

as a result, the microcontroller judges that the program is not executed normally, and makes the WDOUT pin low.

To prevent this, the contents of the address stack registers should be saved by using the PUSH or POP instructions

if the address stack registers are frequently used.

Table 5-5 shows the operations of the PUSH and POP instructions.

Table 5-5. Operations of PUSH and POP Instructions

Instruction Operation

POP
<1> Transfers value of address stack register specified by stack pointer (SP) to address register (AR)

<2> Increments value of stack pointer (SP) by 1

PUSH
<1> Decrements value of stack pointer (SP) by 1

<2> Transfers value of address register (AR) to address stack register specified by stack pointer (SP)

When interrupt is

accepted

49

CHAPTER 5 STACK

[MEMO]

50

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

The system registers (SYSREG) are a group of registers that directly control the CPU and are located on the data

memory.

6.1 Configuration of System Registers

Figure 6-1 shows the location of the system registers on the data memory. As shown, the system registers are

located at addresses 74H through 7FH of the data memory, independently of the banks. This means that each bank

has the same system register at addresses 74H through 7FH.

Because the system registers are located on the data memory, they can be manipulated by all data memory

manipulation instructions. Therefore, the system registers can also be specified as general registers.

Figure 6-1. Location of System Registers on Data Memory

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 Port register

0 1 2 3
4 5 6 7 8 9 A B C D E

System register (SYSREG)

F

Data memory
(BANK0)

Column address

R
ow

 a
dd

re
ss

Data buffer
(DBF)

51

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Figure 6-2 shows the configuration of the system registers. As shown in this figure, the system registers consist

of the following seven registers:

• Address register (AR)

• Window register (WR)

• Bank register (BANK)

• Index register (IX)

• Data memory row address pointer (MP)

• General register pointer (RP)

• Program status word (PSWORD)

Figure 6-2. Configuration of System Registers (µPD17204)

Address 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

Name
Address register

(AR)

Window
register
(WR)

Bank
register
(BANK) Data memory

row address
pointer (MP)

Index register
(IX)

General
register
pointer
(RP)

Program
status
word

(PSWORD)

Symbol AR3 AR2 AR1 AR0 WR BANK
IXH IXM

MPH MPL
IXL RPH RPL PSW

Bit b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

Data 0 0 0 0 0 0 0 0 0
B
C
D

C
M
P

C
Y Z

I
X
E

M
P
E

Initial
value

on
reset

0 0
Un-

defined

(AR) (BANK) (MP)

(IX)

(RP)

52

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.2 Address Register (AR)

6.2.1 Address register configuration

As an example, Figure 6-3 shows the configuration of the address register of the µPD17226.

As shown, this address register consists of 16 bits of the system registers, 74H through 77H (AR3 through AR0).

However, the address register actually consists of 12 bits because the high-order 4 bits are always fixed to 0. On

reset, all the 16 bits are reset to 0.

Figure 6-3. Configuration of Address Register (µPD17226)

Figure 6-4. Address Register of µPD172×× Subseries

Address 74H 75H 76H 77H

Name

Symbol

Bit

Data

On reset

AR3 AR2 AR1 AR0

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

0 0 0 0

0 0 0 0

Address register (AR)

(AR)

Part Number b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 PD17225µ

 PD17201A

 PD17203A

 PD17207

 PD17226

µ
µ
µ
µ

 PD17204

 PD17227

 PD17228

µ
µ
µ

0 0

0

(AR)

(AR)

(AR)

53

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.2.2 Address register function

The address register specifies an address of the program memory when the indirect branch (BR @AR), indirect

subroutine call (CALL @AR), or table reference (MOVT DBF, @AR) instruction has been executed. The address

register value can also be pushed to or popped from the stack by the stack manipulation instructions (PUSH AR and

POP AR).

The following Paragraphs (1) through (4) describe the address register operations, when each of these instruction

has been executed.

The address register contents can also be incremented by using a dedicated increment instruction (INC AR).

(1) Table reference instruction (MOVT DBF, @AR)

By executing the MOVT DBF, @AR instruction, the value of the program memory (16-bit data) addressed by

the value of the address register can be read to the data buffer (0CH-0FH of BANK0).

(2) Stack manipulation instructions (PUSH AR, POP AR)

The PUSH AR instruction decrements the stack pointer (SP) contents and then stores the address register

contents to the address stack specified by the stack pointer.

The POP AR instruction transfers the address stack contents, specified by the stack pointer to the address

register, and then increments the stack pointer contents.

Also refer to CHAPTER 5 STACK .

(3) Indirect branch instruction (BR @AR)

By executing the BR @AR instruction, the address register value can be branched to a program memory

address.

(4) Indirect subroutine call instruction (CALL @AR)

By executing the CALL @AR instruction, a subroutine can be called from a program memory address indicated

by the address register value.

(5) Address register used as peripheral hardware

The address register can be manipulated in 4-bit units by the data memory manipulation instruction.

It is also possible to treat the address register as a peripheral hardware register to transfer 16-bit data with

the data buffer. Therefore, the address register can transfer 16-bit data with the data buffer, by using the PUT

AR, DBF and GET DBF, AR instructions.

The data buffer is assigned to addresses 0CH through 0FH in BANK0 of the data memory.

Figure 6-5. Address Register Used as Peripheral Circuit

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7
System register

Column address

R
ow

 a
dd

re
ss

Data bufferDBF3 DBF2 DBF1 DBF0

AR3 AR2 AR1 AR0

Address register

16 bits can be transferred

(BANK0)

54

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.3 Window Register (WR)

6.3.1 Window register configuration

Figure 6-6 shows the configuration of the window register (WR).

As shown, the window register consists of 4 bits at address 78H of the system registers, and its contents are

undefined on reset. If the HALT or STOP mode has been released by using the RESET pin, the window register retains

the previous contents.

Figure 6-6. Configuration of Window Register

6.3.2 Window register function

The window register is used to transfer data with the register file (RF).

The dedicated instructions PEEK WR, rf and POKE rf, WR are used to transfer data.

(1) PEEK WR, rf instruction

When this instruction has been executed, the register file contents, specified by rf, are transferred to the window

register, as shown in Figure 6-7.

(2) POKE rf, WR instruction

When this instruction has been executed, the window register contents are transferred to the register file

specified by rf, as shown in Figure 6-7.

Figure 6-7. Example of Manipulating Window Register

Address 78H

Name Window register

Symbol WR

Bit b3 b2 b1 b0

Data

On reset Undefined

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Control register

Column address

R
ow

 a
dd

re
ss

WR

PEEK instruction

POKE instruction

System register

Data memory

Register file

55

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.4 Bank Register (BANK)

Figure 6-8 shows the configuration of the bank register of the µPD17207.

The bank register consists of 4 bits at address 79H (BANK) of the system registers.

The bank register is used to select a bank of the RAM. Since the µPD17207 is provided with three banks, the high-

order 2 bits of its bank register are fixed to 0.

When an interrupt is accepted, the contents of the bank register are saved to the interrupt stack register. After

the bank register contents have been saved, BANK is cleared to “0”.

Figure 6-8. Configuration of Bank Register (µPD17207)

Address 79H

Name

Symbol

Bit

Data

On reset

BANK

b3 b2 b1 b0

0 0

0

Bank register

(BANK)

Figure 6-9. Bank Register of µPD172×× Subseries

 PD17201A

 PD17203A

 PD17P203A

 PD17204

 PD17P204

 PD17207

 PD17P207

Part number b3 b2 b1 b0

 PD17225

 PD17226

µ
µ

µ
µ

µ
µ

 PD17227

 PD17228

 PD17P218

µ
µ

µ

0 0 0 0

(BANK)

0 0

µ

µ
µ

(BANK)

(BANK)
0 0 0

56

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.5 Index Register (IX)

The index register is used to modify an address of the data memory when a data memory manipulation instruction

is used.

Figure 6-10 shows the configuration of the index register of the µPD17201A as an example.

As shown in this figure, the index register consists of a total of 12 bits of the system register: IXH (7AH), IXM (7BH),

and IXL (7CH). Of these bits, b2 and b1 at address 7AH are fixed to 0. The most significant bit of 7AH is a memory

pointer enable flag (MPE).

The memory pointer enable flag is used to modify the address of a register specified by the operand @r of the MOV

@r, m instruction with the contents of the data memory row address pointer (MP: memory pointer (low-order 3 bits

of MPH and 4 bits of MPL)).

An index enable flag (IXE) is assigned as the least significant bit of the PSW. This flag is used to modify the address

of the data memory addressed by the operand m of the ADD r,m instruction by ORing the data memory address with

the contents of the index register (IX). When MPE = 0, the register address indicated by operand @r of a general

register indirect transfer instruction (such as MOV @r, m) is also modified with the contents of IXH and IXM.

Figure 6-10. Configuration of Index Register (µPD17201A)

Address 74A 7BH 7CH 7FH

Name

Symbol

Bit

Data

On reset

IXH IXM IXL
PSW

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

M
P
E

0 0

Index register (IX)

(IX)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag

MPH MPL

Memory pointer (MP)

I
X
E

(MP)

57

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.5.1 Index register and data memory row address pointer functions

The following paragraphs (1) and (2) describe the functions of the index register and data memory row address

pointer:

(1) Index register

When a data memory manipulation instruction is executed, the index register modifies with its contents the

bank and address of the data memory specified by the instruction.

However, the address modification by the index register is valid only when the index enable flag (IXE) is set.

To modify an address, the bank and address of the data memory are ORed with the contents of the index

register, and the instruction is executed to the data memory at the address (called real address) specified by

the result of the OR operation.

The index register modifies an address with all the data memory manipulation instructions.

The instructions that cannot be used for address modification are as follows:

MOVT DBF, @AR BR addr INC AR EI

PEEK WR, rf BR @AR INC IX DI

POKE rf, WR CALL addr RORC r

GET DBF, p CALL @AR STOP s

PUT p, DBF RET HALT h

PUSH AR RETSK NOP

POP AR RETI

(2) Data memory row address pointer

The data memory row address pointer modifies with its contents the address at the indirect transfer destination

when a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed.

However, address modification by the data memory row address pointer is valid only when the data memory

row address pointer enable flag (memory pointer enable flag: MPE) is set to 1.

In addition, the address specified by an instruction other than the general register indirect transfer instruction

is not modified.

To modify an address, the bank and row address at the indirect transfer destination are replaced with the

contents of the data memory row address pointer.

Figure 6-1 illustrates data memory address modification and indirect transfer address modification by the index

register and data memory row address pointer.

Paragraphs 6.5.2 through 6.5.4 describe the operations to modify a data memory address by the index register

and data memory row address pointer.

58

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Table 6-1. Data Memory Address Modification by Index Register and Data Memory Row Address Pointer

BANK : Bank register MP : Data memory row address pointer

IX : Index register MPE : Memory pointer enable flag

IXE : Index enable flag r : General register column address

IXH : Bits 10-8 of index register RP : General register pointer

IXM : Bits 7-4 of index register (×) : Contents addressed by ×
IXL : Bits 3-0 of index register × : Direct address such as m, r

m : Data memory address specified by mR, mC : Register such as BANK

mR : Data memory row address (high)

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0

General Register Address
Specified by r

Data Memory Address
Specified by m

Indirect Transfer Address
Specified by @r

IXE MPE Bank
Row

Address
Column
Address Bank

Row
Address

Column
Address Bank

Row
Address

Column
Address

0 0 RP r BANK m BANK mR (r)

0 1 ditto ditto MP (r)

1 0 ditto

BANK m BANK mR

(r)Logical ORLogical OR

IXMIXHIX

1 1 Setting prohibited

Instructions modified

A
dd

/S
ub

Lo
gi

ca
l

C
om

pa
re

T
ra

ns
fe

r

ADD
ADDC
SUB

SUBC

AND
OR

XOR

SKE
SKGE
SKLT
SKNE

SKT
SKF

LD
ST

MOV

r m

m, #n4

m

m, #n4

m, #n4

m, #n

m

m, #n4

m

r

r

@r Indirect transfer address

Ju
dg

e-
m

en
t

59

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.5.2 When MPE = 0, IXE = 0 (no data memory modification)

As indicated in Table 6-1, the data memory address is not affected by the index register and data memory row

address pointer.

(1) Data memory manipulation instruction

Examples 1. If general register is at row address 0

R003 MEM 0.03H

M061 MEM 0.61H

ADD R003, M061

When the above instructions are executed, the contents of general register R003 and those

of data memory M061 are added, and the result is stored to general register R003.

(2) General register indirect transfer

Examples 2. If general register is at row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of data memory M034 are transferred

to address 38H of the data memory.

Therefore, the “MOV @r, m” instruction transfers the contents of the data memory specified

by m to the data memory at an indirect address specified by @r of the same row address

as m.

The indirect transfer address is the contents of the general register with a row address same

as m (row address 3 in the above example) and a column address specified by r (8 in the above

example). Therefore, it is 38H in the above example.

Examples 3. If general register is at row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV R00B, #0EH ; R00B ← 0EH

MOV M034, @R00B ; Register indirect transfer

60

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

When the above instructions are executed, the contents of the data memory at address 3EH

are transferred to data memory M034 as indicated in Figure 6-11.

Therefore, the “MOV m, @r” instruction transfers the contents of the data memory at an

indirect address specified by @r of a row address same as m to the data memory addressed

by m.

The indirect transfer address is the contents of the general register with a row address same

as m (row address 3 in the above example) and a column address specified by r (0EH in the

above example). Therefore, it is 3EH in the above example.

Comparing this with Example 2, the source address of the data memory whose contents are

to be transferred and the destination address are exchanged.

Figure 6-11. Example of Operation When MPE = 0, IXE = 0

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

R
ow

 a
dd

re
ss

Column address

Example 2. MOV @R005, M034

Example 1. ADD R003, M061

Specifies column address
at transfer destination

Example 3. MOV M034, @R00B

Specifies column address
at transfer source

System register

Bank
Row

Address
Column
Address

0000 110 0001Data memory address M

0000 000 0011General register address R

Generation of address in Example 1

ADD R003, M061

Bank
Row

Address
Column
Address

0000 011 0100Data memory address M

0000 000 0101General register address R

0000 011 1000Indirect transfer address @R

Content
of RSame as M

Generation of address in Example 2

MOV @R005, M034

E

61

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.5.3 When MPE = 1, IXE = 0 (diagonal indirect transfer)

As shown in Table 6-1, the bank and row address of the indirect transfer address specified by @r are the value

of the data memory row address pointer only when a general register indirect transfer instruction (MOV @r, m or MOV

m, @r) is executed.

Examples 1. If general register is at row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6

MOV MPH, #1000B ; MPE ← 1

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of data memory M034 are transferred to

data memory address 68H as shown in Figure 6-12.

When the “MOV @r,m” instruction is executed when MPE = 1, the contents of the data memory

specified by m are transferred to the column address specified by @r having a row address

specified by the memory pointer.

At this time, the indirect address specified by @r is the contents of the general register with a bank

and row address being the value of the data memory row address pointer (row address 6 in the

above example) and a column address specified by r. It is, therefore, 68H in the above example.

When this is compared with Example 2 in 6.5.2, the bank and row address of the indirect address

specified by @r are specified by the data memory row address pointer in the above example, while

the bank and row address of the indirect address in Example 2 in 6.5.2 are the same as m.

Therefore, general register indirect transfer can be diagonally carried out by setting MPE to 1.

Examples 2. If general register is at row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6

MOV MPH, #1000B ; MPE ← 1

MOV R00B, #0EH ; R00B ← 0EH

MOV M034, @R00B ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 6EH are

transferred to data memory M034, as shown in Figure 6-12.

62

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Figure 6-12. Example of Operation When MPE = 1, IXE = 0

0

0

1

2

3

4

5

6

7

R
ow

 a
dd

re
ss

1 2 3 4 5 6 7 8 9 A B C D E F

System register

Column address

Example 1. MOV @R005, M034

Specifies column address
at transfer destination

Specifies column
address at transfer
source

Example 2. MOV M034, @R00B

Memory pointer = 00110B

General register8 E

Bank
Row

Address
Column
Address

0000 011 0100Data memory address M

0000 000 0101General register address R

0000 110 1000Indirect transfer address @R

Content
of RContent of MP

Generation of address in Example 1

MOV @R005, M034

Bank
Row

Address
Column
Address

0000 011 0100Data memory address M

0000 000 0111General register address R

0000 110 1110Indirect transfer address @R

Content
of RContent of MP

Generation of address in Example 2

MOV M034, @R00B

63

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.5.4 When MPE = 0, IXE = 1 (data memory address index modification)

When a data memory manipulation instruction is executed as indicated in Table 6-1, all the banks and addresses

of the data memory directly specified by the operand “m” of the instruction are modified by the index register.

When a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed, the bank and row

address of the indirect transfer address specified by @r are also modified by the index register.

To modify an address, the contents of the data memory address and those of the index register are ORed, and

the instruction is executed to the data memory address (called an real address) specified by the result of the OR

operation.

Here is an example:

Examples 1. If general register is at row address 0

R003 MEM 0.03H

M061 MEM 0.61H

MOV IXL, #0010B ; IX ← 00000010010B

MOV IXM, #0001B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD R003, M061

When the instructions in this example are executed, the contents of the data memory at address

73H (real address) and the contents of general register R003 (address 03H) are added, and the

result is stored to general register R003 as indicated in Figure 6-13.

Therefore, when the “ADD r, m” instruction is executed, the data memory address specified by “m”

(address 61H in the above example) is modified by the index register.

To modify the address, address 61H, which is the address of data memory M061 (00001100001B

in binary), is ORed with the value of the index register (00000010010B in the above example), and

the result 00001110011B is treated as the real address (address 73H), and the instruction is

executed to this real address.

Comparing this with Example in 6.5.2 (when IXE = 0), the address of the data memory directly

specified by the operand “m” of the instruction is modified (ORed) by the index register.

64

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Figure 6-13. Example of Operation When MPE = 0, IXE = 1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

R003

R
ow

 a
dd

re
ss

Column address

Example 1. ADD R003, M061

M061
IX

System register

Index modification

Real address 00001110011B

: 00001100001B
: 00000010010BOR)

M061

General register

Bank
Row

Address
Column
Address

0000 110 0001Data memory address M

0000 000 0011General register address R

0000 110 0001Index modification

Generation of address in Example 1

ADD R003, M061

0000 001 0010

0000 111 0011

IXL

BANK m

M061

IX

Real addr.
(ORed) Instruction is executed to this address.

IXH IXM

65

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Examples 2. General register indirect transfer

If general register is in BANK0 at row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV IXL, #0001B ; IX ← 00000000001B

MOV IXM, #0000B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 35H are

transferred to the address 38H of the data memory as shown in Figure 6-14.

Therefore, if the “MOV @r, m” instruction is executed when IXE = 1, the data memory address

(direct address) specified by “m” is modified with the contents of the index register, and the bank

and row address of the indirect address specified by “@r” are also modified by the index register.

All the bank, row, and column address of the address specified by “m” are modified, and the bank

and row address of the indirect address specified by “@r” are modified.

In the above example, therefore, the direct address is 35H and the indirect address is 38H.

When this is compared with Example 3 in 6.5.2 when IXE = 0, the bank, row, and column address

of the direct address specified by “m” are modified by the index register and general register indirect

transfer is executed to the row address same as the modified data memory address in the above

example, while the direct address is not modified in Example 3 in 6.5.2.

66

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Figure 6-14. Example of General Register Indirect Transfer Operation When MPE = 0, IXE = 1

Examples 3. To clear contents of all data memory to 0

M000 MEM 0.00H

MOV IXL, #0 ; IX ← 0

MOV IXM, #0 ;

MOV IXH, #0 ; MPE ← 0

LOOP:

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV M000, #0 ; Clears data memory specified by IX to 0

INC IX ; IX ← IX + 1

AND PSW, #1110B ; IXE ← 0: Since IXE is

; at address 7FH, it is not modified by IX

SKE IXM, #0111B ; Row address 7?

BR LOOP ; LOOP if not 7 (row address is not cleared)

0

0

1

2

3

4

5

6

7

R
ow

 a
dd

re
ss

1 2 3 4 5 6 7 8 9 A B C D E F

System register

Column address

Index
modification

Specifies column address
at transfer destination

Example 2. MOV @R005, M034

General register8

M034
IX

Real address 00000110101B

: 00000110100B
: 00000000001BOR)

M034

Direct
address Indirect address

R005

67

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Examples 4. Processing of array

Suppose 8-bit data A is defined one-dimensionally as shown in Figure 6-15. To execute the

following operation, the instructions below should be executed:

A (N) = A (N) + 4 (0 ≤ N ≤ 15)

Where general register is at row address 7

M000 MEM 0.00H

M001 MEM 0.01H

MOV IXH, #0 ; IX ← 2N

MOV IXM, #N SHR 3 ; Since array element is 8 bits, data memory address to

MOV IXL, #N SHL 1 AND 0FH ; be modified is shifted

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD M000, #4 ; Adds 4 to data memory M000

ADDC M001, #0 ; and M001 that are modified by IX, i.e., adds 4 to 8-bit

; array specified by A(N)

To specify N of array A(N) as indicated in the above example, specify a value 2 times that of N

to the index register.

Figure 6-15. Example of Operation When MPE = 0, IXE = 1 (array processing)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

A (0)

R
ow

 a
dd

re
ss

Column address

System register

A (8)

A (1)

A (9)

A (2)

A (10)

A (3)

A (11)

A (4)

A (12)

A (5)

A (13)

A (6)

A (14)

A (7)

A (15)

A (0)

00H 01H

b3 b2 b1 b0 b7 b6 b5 b4

68

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.6 General Register Pointer (RP)

6.6.1 General register pointer configuration

Figure 6-16 shows the configuration of the general register pointer of the µPD17201A as an example.

Figure 6-16. Configuration of General Register Pointer (µPD17201A)

As shown in this figure, the general register pointer consists of 4 bits of address 7DH (RPH) of the system register

and the high-order 3 bits of address 7EH (RPL). Actually, however, only the low-order 2 bits of address 7DH and the

high-order 3 bits of address 7EH are valid because the high-order 3 bits of address 7DH are always fixed to 0.

On reset, all the bits are cleared to 0.

6.6.2 General register pointer function

This section describes the functions of the general register pointer of the µPD17201A as an example.

The general register pointer is used to specify a data memory area as a general register.

As a general register, 16 nibbles, which are at the same row address on the data memory, can be specified.

Therefore, which row address is to be used is specified by using the general register pointer as shown in Figure 6-

17.

Since the number of valid bits of the general register pointer is 5, the row addresses on the data memory that can

be specified as general registers are 0H through 7H on BANK0 through 2. In other words, the entire data memory

area can be specified as general registers.

When a data memory area is specified as a general register, an operation and data transfer can be executed

between the general register and a data memory area.

For example, suppose the following instruction is executed:

ADD r, m or LD r, m

Then addition or data transfer is executed between the general register addressed by operand “r” of the instruction

and a data memory area addressed by “m”.

For details, refer to CHAPTER 7 GENERAL REGISTER (GR) .

Address 7DH 7EH

Name

Symbol

Bit

Data

On reset

b3 b2 b1 b0 b3 b2 b1 b0

General register
pointer (RP)

Flag

RPH RPL

B
C
D

0 0

0 0

(RP)

69

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Figure 6-17. Configuration of General Register (µPD17201A)

0 0 0 0 0 →0

b3 b2 b1 b0 b3 b2 b1 b0

RPH RPL

General Register Pointer
(RP)

F
ix

ed
 to

 0

F
ix

ed
 to

 0

0 0 0 0 1 →1

0 0 0 1 0 →2

0 0 0 1 1 →3

0 0 1 0 0 →4

0 0 1 0 1 →5

0 0 1 1 0 →6

0 0 1 1 1 →7

0 1 0 0 0 →0

0 1 0 0 1 →1

0 1 0 1 0 →2

0 1 0 1 1 →3

0 1 1 0 0 →4

0 1 1 0 1 →5

0 1 1 1 0 →6

0 1 1 1 1 →7

1 0 0 0 0 →0

1 0 0 0 1 →1

1 0 0 1 0 →2

1 0 0 1 1 →3

1 0 1 0 0 →4

1 0 1 0 1 →5

1 0 1 1 0 →6

1 0 1 1 1 →7

A
ss

ig
ne

d
to

 B
C

D
 fl

ag

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register (16 nibbles)

DBF

System register RP
Port register

Column addressBANK0

Example:
General register
when
RP = 0000010B

←

General register
setting range

System register

Same system
register
exists

Port register

BANK1

BANK2

System register

70

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.7 Program Status Word (PSWORD)

6.7.1 Program status word configuration

Figure 6-18 shows the program status word configuration.

Figure 6-18. Configuration of Program Status Word

As shown in this figure, the program status word consists of a total of 5 bits of the system register: the least significant

bit of RPL (7EH) and PSW (7FH).

Each of these bits functions as a binary coded decimal flag (BCD), compare flag (CMP), carry flag (CY), zero flag

(Z), and index enable flag (IXE).

All the flags are cleared to 0 on reset.

When an interrupt is accepted, the contents of PSWORD are saved to the interrupt stack register. After the

PSWORD contents have been saved, all the bits of PSWORD are cleared to “0”.

Address 7EH 7FH

Name

Symbol

Bit

Flag

On reset

b3 b2 b1 b0 b3 b2 b1 b0

Program status
word (PSWORD)

RPL PSW

0 0

(RP)

B
C
D

C
M
P

C
Y

Z I
X
E

71

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.7.2 Program status word function

Each flag of the program status word sets the condition for an arithmetic operation or transfer instruction, or to

indicate an operation result. Figure 6-19 shows the program status word functions.

Figure 6-19. Functions of Program Status Word

BCD CMP CY Z IXE

b0 b3 b2 b1 b0

7EH 7FH

Index enable flag Index modification is enabled when this flag is set.

Zero flag Reset if result of arithmetic operation is other than
"0". Set condition differs depending on contents of
CMP flag.
(1) When CMP = 0
 Set if operation result is "0"
(2) When CMP = 1
 Set if Z = 1 and operation result is "0"

Carry flag Set if carry occurs as result of executing addition
instruction, or if borrow occurs as result of executing
subtraction instruction.
Remains reset if neither carry nor borrow occurs.
Also set if least significant bit of general register is "1"
when RORC instruction is executed, and reset if LSB
is "0".

Compare flag Result of arithmetic operation is not stored in data
memory while this flag is set. CMP flag is reset
automatically when SKT or SKF instruction is
executed.

BCD flag All arithmetic operations are performed in decimal
(BCD) when this flag is set, and in binary when this
flag is reset.

72

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.7.3 Index enable flag (IXE)

The IXE flag is used to modify an address of the data memory when a data memory manipulation instruction is

executed.

When this flag is set to 1, the contents of the data memory address specified by the instruction are ORed with the

contents of the index register (IX), and the instruction is executed to the data memory addressed by the result of the

OR operation (real address).

For details, refer to 6.5 Index Register (IX) .

6.7.4 Zero (Z) and compare (CMP) flags

The Z flag indicates that the result of an arithmetic operation executed is 0, and the CMP flag made setting so that

the result of an arithmetic operation is not stored in the data memory or general register.

The conditions under which the Z flag is set or reset differ depending on the status of the CMP flag, as shown in

Table 6-2.

Table 6-2. Status of Compare Flag (CMP) and Set and Reset Conditions of Zero Flag (Z)

Condition
Status of Z Flag

When CMP Is 0 When CMP Is 1

On reset Reset Reset with CMP

When “0” is directly written to Z flag by data memory Reset Reset

manipulation instruction

When “1” is directly written to Z flag by data memory Set Set

manipulation instruction

If result of arithmetic operation is other than“0” Reset Reset

If result of arithmetic operation is “0” Set Retains previous status of Z flag

The Z and CMP flags are used to compare the contents of a general register with those of the data memory. The

status of the Z flag is not changed by an operation other than an arithmetic operation, and the status of the CMP flag

is not changed by an operation other than bit testing.

73

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.7.5 Carry flag (CY)

The CY flag indicates occurrence of a carry or borrow after an addition or subtraction instruction is executed.

The CY flag is set to 1 if a carry or borrow occurs as a result of the arithmetic operation; it is reset to 0 if neither

a carry nor a borrow occurs.

When the “RORC r” instruction, which shifts the contents of a general register specified by r 1 bit to the right, is

executed, the value of the CY flag immediately before the instruction is executed is shifted to the most significant bit

position of the general register, and the least significant bit is shifted to the CY flag.

The CY flag is convenient for skipping the next instruction if a carry or borrow occurs.

The status of this flag is not changed by an operation other than arithmetic operation or rotation processing.

6.7.6 Binary coded decimal flag (BCD)

The BCD flag is used to execute a BCD operation.

When this flag is set to 1, all arithmetic operations are executed in BCD format. When it is reset to 0, the operations

are executed in binary and 4-bit units.

This flag does not affect the logical operation, bit judgment, comparison, and rotation processing.

6.7.7 Notes on executing arithmetic operation

When executing an arithmetic operation (addition or subtraction) to the program status word (PSWORD), note that

the “result” of the arithmetic operation is stored in the PSWORD, as indicated by the following example:

Example MOV PSW, #0001B

ADD PSW, #1111B

When the above instructions are executed, a carry occurs. Consequently, the CY flag, which is bit 2

of the PSW, would be set to 1. Actually, however, 0000B is stored to the PSW because the result of

the operation is 0000B.

74

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.8 Notes on Using System Registers

6.8.1 Reserved words of system registers

Because the system registers are located on the data memory, all the data memory manipulation instructions can

be used to manipulate the system registers. When using the 17K series assembler (RA17K), however, a data memory

address must be defined as a symbol in advance because a data memory address cannot be directly written as the

operand of an instruction.

Although the system registers are part of the data memory, they are defined as symbols as “reserved words” by

the assembler (RA17K) because they have dedicated functions, unlike the ordinary data memory areas.

The reserved words of the system registers are assigned to addresses 74H through 7FH, and are defined by

symbols (such as AR3, AR2, and PSW) shown in Figure 6-2 Configuration of System Registers (µPD17204).

When these reserved words are used, it is not necessary to define a symbol, as shown in the following Example 2.

Examples 1. MOV 34H, #0101B ; If data memory address 34H or 76H is

MOV 76H, #1010B ; written as operand, error occurs.

M037 MEM 0.37H ; Data memory address of general-purpose

MOV M037, #0101B ; data memory must be defined as symbol by MEM directive

2. MOV AR1, #1010B ; Symbol needs not to be defined if reserved word AR1 (address 6H)

; is used.

; Reserved word AR1 is defined in device file as “AR1 MEM 0.76H”

When the assembler (RA17K) is used, the following macro instructions are embedded in the assembler as flag

type symbol manipulation instructions:

SETn : Sets flag to “1”

CLRn : Resets flag to “0”

SKTn : Skips if all flags are “1”

SKFn : Skips if all flags are “0”

NOTn : Inverts flag

INITFLG : Initializes flag

75

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

Therefore, by using these macro instructions, the data memory can be manipulated as flags as shown in Example

3 below.

Since each bit (flag) of the program status word and memory pointer enable flag has its own function, a reserved

word (MPE, BCD, CMP, CY, Z, or IXE) is defined for each bit.

By using this flag type reserved word, therefore, an embedded macro instruction can be used as is as shown in

Example 4 .

Examples 3. F0003 FLG 0.00.3 ; Flag type symbol definition

SET1 F0003 ; Embedded macro

Macro expansion

OR .MF.F0003 SHR 4, #.DF.F0003 AND 0FH

; Sets bit 3 at address 00H in BANK0

4. SET1 BCD ; Embedded macro

Macro expansion

OR .MF.BCD SHR 4, #.DF.BCD AND 0FH

; Sets BCD flag

; BCD is defined by “BCD FLG 0.7EH.0”

CLR2 Z, CY ; Flag of same address

Macro expansion

AND .MF.Z SHR 4, #.DF. (NOT (Z OR CY) AND 0FH)

CLR2 Z, BCD ; Flag of different addresses

Macro expansion

AND .MF.Z SHR 4, #.DF. (NOT Z AND 0FH)

AND .MF.BCD SHR 4, #.DF. (NOT BCD AND 0FH)

76

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

6.8.2 Handling system register fixed to “0”

Data of the system registers fixed to “0” (refer to Figure 6-2. Configuration of System Registers (µPD17204)

calls for your attention when the device, emulator, or assembler operates, as described in (1), (2), and (3) below.

(1) When device operates

The data fixed to “0” is not affected even when a write instruction is executed to it. When this data is read,

“0” is always read.

(2) When using 17K series in-circuit emulator (IE-17K or IE-17K-ET)

An error occurs if an instruction that writes “1” is executed to the data fixed to “0”.

Therefore, if the following instructions are executed, an error occurs on the in-circuit emulator:

Examples 1. MOV BANK, #0100B ; Writes 1 to bit 3 fixed to 0

2. MOV IXL, #1111B ;

MOV IXM, #1111B ;

MOV IXH, #0001B ;

ADD IXL, #1 ;

ADDC IXM, #0 ;

ADDC IXH, #0 ;

However, an error does not occur even if the “INC AR” or “INC IX” instruction is executed when all the valid

bits are “1” as shown in Example 2. This is because the “INC” instruction, which is executed when all the valid

bits of the address register and index register are “1”, clears all the valid bits to “0”.

Even if “1” is written to the data fixed to “0” of the address register as shown in Examples 1 and 2 above, an

error does not occur.

(3) When using 17K series assembler (RA17K)

An error is not output even if there is an instruction that writes “1” to data fixed to “0”. Therefore, when “MOV

BANK, #0100B” instruction shown in Example 1 is used, the assembler does not cause an error, but an

emulator error occurs when the instruction is executed on the in-circuit emulator.

The assembler (RA17K) does not causes an error because it cannot detect the data memory address subject

to manipulation by an instruction while register indirect transfer is executed.

The assembler causes an error only on the following occasion:

When value greater than 1 is used as “n” of embedded macro instruction “BANKn”

This is because it is judged that the bank register of the system registers is to be explicitly manipulated when

the “BANKn” instruction is used.

77

CHAPTER 6 SYSTEM REGISTERS (SYSREG)

[MEMO]

78

CHAPTER 7 GENERAL REGISTERS (GR)

CHAPTER 7 GENERAL REGISTERS (GR)

The general registers (GR) are registers located on the data memory and are used for direct operation or data

transfer with the data memory.

7.1 General Register Configuration

Figure 7-1. shows the configuration of the general register of the µPD17201A as an example.

As shown in this figure, 16 nibbles (16 × 4 bits) at the same row address on the data memory can be used as a

general register.

Which row address is to be used is specified by the general register pointer (RP) of the system registers. Since

the RP has 5 valid bits, the range of the data memory in which general registers can be specified is row addresses

0H to 7H.

7.2 General Register Function

By using a general register, an operation or transfer between the data memory and the general register can be

executed with a single instruction. In other words, an operation or transfer can be executed between two data memory

areas with a single instruction because a general register is a part of the data memory. In addition, a general register

can also be manipulated by a data memory manipulation instruction in the same manner as the other data memory

areas because it is on the data memory.

79

CHAPTER 7 GENERAL REGISTERS (GR)

Figure 7-1. Configuration of General Register (µPD17201A)

0 0 0 0 0 →0

b3 b2 b1 b0 b3 b2 b1 b0

RPH RPL

General Register Pointer
(RP)

F
ix

ed
 to

 0

F
ix

ed
 to

 0

0 0 0 0 1 →1

0 0 0 1 0 →2

0 0 0 1 1 →3

0 0 1 0 0 →4

0 0 1 0 1 →5

0 0 1 1 0 →6

0 0 1 1 1 →7

0 1 0 0 0 →0

0 1 0 0 1 →1

0 1 0 1 0 →2

0 1 0 1 1 →3

0 1 1 0 0 →4

0 1 1 0 1 →5

0 1 1 1 0 →6

0 1 1 1 1 →7

1 0 0 0 0 →0

1 0 0 0 1 →1

1 0 0 1 0 →2

1 0 0 1 1 →3

1 0 1 0 0 →4

1 0 1 0 1 →5

1 0 1 1 0 →6

1 0 1 1 1 →7

A
ss

ig
ne

d
to

 B
C

D
 fl

ag

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register (16 nibbles)

DBF

System register RP
Port register

Column addressBANK0

Example:
General register
when
RP = 0000010B

←

General register
setting range

System register

Same system
register
exists

Port register

BANK1

BANK2

System register

80

CHAPTER 8 REGISTERS FILE (RF)

CHAPTER 8 REGISTER FILE (RF)

The register file is a group of registers that mainly set the conditions of the peripheral hardware.

8.1 Register File Configuration

8.1.1 Register file configuration

Figure 8-1 shows the configuration of the register file.

As shown in this figure, the register file consists of 128 nibbles (128 × 4 bits).

The register file is assigned addresses in 4-bit units, like the data memory, with row addresses 0H through 7H and

column addresses 0H through 0FH.

Addresses 00H through 3FH are called control registers.

8.1.2 Register file and data memory

Figure 8-2 shows the relations between the register file and data memory.

As shown in this figure, addresses 40H through 7FH of the register file overlap the data memory.

Therefore, the same memory addresses 40H through 7FH of the bank selected at that time exist at addresses 40H

through 7FH of the register file.

Figure 8-1. Configuration of Register File

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Control register

Register file

R
ow

 a
dd

re
ss

Column address

81

CHAPTER 8 REGISTERS FILE (RF)

Figure 8-2. Relations between Register File and Data Memory

8.2 Register File Function

8.2.1 Register file function

The register file is a group of control registers that mainly set the conditions of the peripheral hardware.

These control registers are located at addresses 00H through 3FH of the register file.

The other addresses of the register file (40H through 7FH) overlap the data memory. Therefore, these addresses

can be used in the same manner as the data memory except that they can be manipulated by register file manipulation

instructions “PEEK” and “POKE” as described in 8.2.3.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Data memory

BAKN0

Column address

0

1

2

3

Control register

System register
Port register

Register file

R
ow

 a
dd

re
ss

82

CHAPTER 8 REGISTERS FILE (RF)

8.2.2 Control register function

The peripheral hardware whose conditions are set by the control registers is shown in Table 8-1.

For details on the peripheral hardware and control registers, refer to the description of each peripheral hardware.

Table 8-1. Peripheral Hardware of µPD172×× Subseries

Part Number 17201A 17203A 17225

17207 17204 17226

17227

Peripheral Hardware 17228

Stack

Timer

Interrupt

Carrier generator

Remote controller reception amplifier

General-purpose port

A/D converter

Serial interface

LCD driver

Caution Some peripheral hardware transfers data via the data buffer (DBF) (refer to CHAPTER 9 DATA

BUFFER (DBF)).

83

CHAPTER 8 REGISTERS FILE (RF)

8.2.3 Register file manipulation instructions

Data is written to or read from the register file via the window register of the system registers (WR: address 78H).

To write or read data, the following dedicated instructions are used:

PEEK WR, rf: Reads data of register file addressed by rf to WR

POKE rf, WR: Writes data of WR to register file addressed by rf

Example M030 MEM 0.30H ; Uses address 30H of data memory as WR saving area

M032 MEM 0.32H ; Uses address 32H of data memory as WR manipulation area

RF11 MEM 0.91H ; Symbol definition

RF33 MEM 0.B3H ; Symbols at addresses 00H-3FH of register file must be defined as

RF70 MEM 0.70H ; 80H-BFH of BANK0. For details, refer to 8.4 Notes on Using Register

RF73 MEM 0.73H ; File

BANK0

<1> PEEK WR, RF11 ;

CLR1 MPE ; Indicates example for saving contents of WR to general-purpose data

CLR1 IXE ; memory (addresses 00H-3FH). As example, saving data to data memory

OR RPL, #0110B ; address 30H without address modification is indicated.

<2> LD M030, WR ;

<3> POKE RF73, WR ; Data can be directly transferred between data memory at addresses

<4> PEEK WR, RF70 ; 40H-7FH and control register by WR, PEEK, and POKE instructions

<5> POKE RF33, WR ;

<6> ST WR, M032 ;

84

CHAPTER 8 REGISTERS FILE (RF)

Figure 8-3 shows an example of operation.

As shown in this figure, the control register (addresses 00H-3FH) reads or writes the contents of the register file

addressed by “rf” from or to the window register when the “PEEK WR, rf” or “POKE rf, WR” instruction is executed.

Since addresses 40H through 7FH of the register file overlap the data memory, the “PEEK WR, rf” or “POKE rf,

WR” instruction is executed to data memory address “rf” in the bank selected at that time.

Addresses 40H through 7FH of the register file can also be manipulated by a memory manipulation instruction.

The control register can be manipulated in 1-bit units by using a macro instruction (refer to 8.4.2 Symbol definition

of register file and reserved word).

Figure 8-3. Accessing Register File with PEEK or POKE Instruction

0

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 A B C D E F

System register

Column address

<2> LD M030, WR

<3> POKE
<4> PEEK

RF73, WR
WR, RF70

<6> ST WR, M032

Data buffer (DBF)
Data memory

0

1

2

3

WR

<5> POKE RF33, WR

<1> PEEK WR, RF11

Control register

Register file

R
ow

 a
dd

re
ss

BANK0

85

CHAPTER 8 REGISTERS FILE (RF)

8.3 Control Registers

The control registers consist of 64 nibbles (64 × 4 bits) of addresses 00H through 3FH of the register file.

Each control register has an attribute of 1 nibble and serves as a read/write (R/W) or a read-only (R) register.

Some read/write flags, however, are always “0” when they are read.

Of the 4-bit data in 1 nibble, the bits fixed to “0” are always “0” when they are read, and retain “0” even when data

is written to them.

When an unused register is read, its value is undefined. Nothing is changed even when data is written to this

register.

8.4 Notes on Using Register File

8.4.1 Notes on manipulating control registers (read-only and unused registers)

When you manipulate the read-only (R) and unused registers of the control registers (addresses 00H through 3FH

of the register file), you must pay attention when the device operates, as described in (1), (2), and (3) below when

you use the 17K Series assembler (RA17K) and the in-circuit emulators (IE-17K, IE-17K-ET).

(1) When device operates

Nothing is changed even when data is written to a read-only register.

If an unused register is read, an “undefined value” is read. Nothing is changed even when data is written to

this register.

(2) When using assembler (RA17K)

An “error” occurs when an instruction that writes data is executed to access a read-only register.

An “error” also occurs when an instruction that reads or writes data is executed to an unused register.

(3) When using an 17K series in-circuit emulator (IE-17K or IE-17K-ET) (patch processing, etc.)

An “error” does not occur even when data is written to a read-only register.

When an unused register is read, an “undefined value” is read, and nothing is changed even when data is

written to this register, but an “error” does not occur.

86

CHAPTER 8 REGISTERS FILE (RF)

8.4.2 Symbol definition of register file and reserved words

If a register file address is directly written in numeric value as operand “rf” of the “PEEK WR, rf” or “POKE rf, WR”

instruction when the 17K series assembler (RA17K) is used, an “error” occurs.

It is therefore necessary to define the address of the register file as a symbol as shown in Example 1 below.

Examples 1. Error occurs

PEEK WR, 02H ;

POKE 21H, WR ;

Error does not occur

RF71 MEM0.71H ; Symbol definition

PEEK WR, RF71 ;

At this time, pay attention to the following point:

• To define a control register as a symbol of data memory address type, it must be defined as the addresses 80H

through BFH of BANK0.

This is because the control register is manipulated via the window register, and an error must occur when the control

register is manipulated by an instruction other than “PEEK” and “POKE”.

However, the register file (addresses 40H through 7FH) that overlap the data memory can be defined as a symbol

without changing the address.

Here is an example:

Examples 2. RF71 MEM1.71H ; Register file overlapping data memory

RF02 MEM0.82H ; Control register

PEEK WR, RF71 ; RF71 is data memory at address “71H”

PEEK WR, RF02 ; RF02 is control register at address 02H

87

CHAPTER 8 REGISTERS FILE (RF)

When the assembler (RA17K) is used, the following macro instructions are included in the assembler as flag type

symbol manipulation instructions:

SETn : Sets flag to “1”

CLRn : Clears flag to “0”

SKTn : Skips if all flags are “1”

SKFn : Skips if all flags are “0”

NOTn : Inverts flag

INITFLG : Initializes flag

INITFLGX : Initializes flag

Therefore, by using these macro instructions, the contents of the register file can be manipulated in 1-bit units, as

shown in the following Example 3.

Because many flags of the control registers are manipulated in 1-bit units, “reserved words” are defined on the

assembler (RA17K) as flag type symbols.

However, no flag type reserved word is available for the stack pointer. The reserved word for the stack pointer

is defined as data memory type, “SP”. Therefore, the flag manipulation instruction cannot be used with a reserved

word.

Examples 3. INITFLG WDTRES ; Initialize

(SET1 WDTRES ; Sets flag)

Macro expansion

PEEK WR, .MF.WDTRES SHR4

OR WR, #.DF.WDTRES AND 0FH

POKE .MF.WDTRES SHR4, WR

88

CHAPTER 9 DATA BUFFER (DBF)

CHAPTER 9 DATA BUFFER (DBF)

The data buffer consists of 4 nibbles assigned to address 0CH through 0FH of BANK0 of the data memory.

This area is a data storage area that is used to transfer data between the CPU and peripheral circuit (address

register, serial interface, and timer) by using the GET and PUT instructions. Moreover, the constants data on the

program memory can be read to the data buffer by the MOVT DBF, @AR instruction.

9.1 Data Buffer Configuration

Figure 9-1 shows the location of the data buffer on the data memory.

As shown, the data buffer is assigned addresses 0CH through 0FH of BANK0, and consists of a total of 16 bits

(= 4 × 4 bits).

Figure 9-1. Location of Data Buffer

Figure 9-2 shows the configuration of the data buffer. As shown in this figure, the data buffer consists of 16 bits

with the bit 0 at address 0FH of the data memory as the LSB and the bit 3 at address 0CH as the MSB.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

R
ow

 a
dd

re
ss

Column address

System register (SYSREG)

Data buffer (DBF)

Data memory

BANK0

89

CHAPTER 9 DATA BUFFER (DBF)

Figure 9-2. Configuration of Data Buffer

Because the data buffer is located on the data memory, it can be manipulated by all the data memory manipulation

instructions.

9.2 Data Buffer Function

The data buffer has two major functions.

One is a function to transfer data with the peripheral hardware, and the other is a function to read the constants

data on the program memory (table reference). Figure 9-3 shows the relations between the data buffer and the

peripheral hardware of the µPD17201A as an example.

Figure 9-3. Data Buffer and Peripheral Hardware (µPD17201A)

Data Memory
BANK0

Data buffer

Address

Bit

Bit

Symbol

Data

0CH

b3

b15

b2

b14

b1

b13

b0

b12

DBF3

M
S
B

<

>

0DH

b3

b11

b2

b10

b1

b9

b0

b8

DBF2

0EH

b3

b7

b2

b6

b1

b5

b0

b4

DBF1

0FH

b3

b3

b2

b2

b1

b1

b0

b0

DBF0

<

>

L
S
BData

Data buffer
(DBF)

Internal bus

Program memory
(ROM)

Constant data

Peripheral
address

01H
Serial interface

(SIOSFR)

Peripheral hardware

02H 8-bit timer (TMM)

03H/04H
Carrier generator circuit

for remote controller

05H A/D converter (ADCR)

40H Address register (AR)

90

CHAPTER 9 DATA BUFFER (DBF)

9.2.1 Data buffer and peripheral hardware

Table 9-1 shows the peripheral hardware devices of the µPD17201A that transfer data via the data buffer.

Each of these peripheral hardware devices is assigned an address (called a peripheral address). By executing

the dedicated instruction GET or PUT to these peripheral addresses, data can be transferred between the data buffer

and peripheral hardware devices.

GET DBF, p : Reads data of peripheral hardware addressed by p to data buffer (DBF)

PUT p, DBF : Sets data of data buffer (DBF) to peripheral hardware addressed by p

Some peripheral hardware devices are write/read (PUT/GET), some are write-only (PUT), and the others are read-

only (GET).

If the GET and PUT instructions are executed to the write-only and read-only devices, respectively, the operations

are as follows:

• If GET is executed to write-only (PUT) peripheral hardware

An undefined value is read.

• If PUT is executed to read-only (GET) peripheral hardware

Nothing is affected (same as NOP).

Table 9-1. Peripheral Hardware (µPD17201A)

(1) Peripheral hardware that inputs/outputs in 8-bit units

Peripheral Address Name Peripheral Hardware
Data Direction

Valid Bit Length
PUT GET

01H SIOSFR Serial interface 8 bits

02H TMM 8-bit timer 8 bits

03H NRZLTMM NRZ modulo register (low level) 6 bits

04H NRZHTMM NRZ modulo register (high level) 6 bits

05H ADCR A/D converter 8 bits

(2) Peripheral hardware that inputs/outputs in 16-bit units

Peripheral Address Name Peripheral Hardware
Data Direction

Valid Bit Length
PUT GET

40H AR Address register 12 bits

91

CHAPTER 9 DATA BUFFER (DBF)

9.2.2 Data transfer with peripheral hardware

Data is transferred between the data buffer and peripheral hardware in 8-bit or 16-bit units.

At this time, the PUT and GET instructions can be executed in one instruction execution time, regardless of whether

the data length is 16 bits.

Examples 1. When executing PUT (when valid bit length of peripheral hardware is 8 bits (bits 0 through 7))

To write 8-bit data, the high-order 8 bits of the data buffer (DBF3 and DBF2) are “don’t care” bits

(that can take any value).

Examples 2. When executing GET

When 8-bit data is read, the high-order 8 bits of the data buffer (DBF3 and DBF2) are not affected.

DBF0

b3 b2 b1 b0

DBF1

b7 b6 b5 b4

DBF2

Don't care

DBF3

Valid bits

b0b7

Don't care

PUT

Data of peripheral
hardware

Data buffer

DBF0

b0

DBF1

b7

DBF2

Retained

DBF3

Valid bits

b0b7

Retained

GET

Data of peripheral
hardware

Data buffer

92

CHAPTER 9 DATA BUFFER (DBF)

9.2.3 Table reference

The constant data on the program memory can be read to the data buffer by using the MOVT instruction.

The function of the MOVT instruction is as follows:

MOVT DBF, @AR : Reads contents of program memory addressed by contents of address register (AR) to

data buffer (DBF)

Caution Note that one stack level is temporarily used when table reference is executed.

DBF3

b15

DBF2 DBF1 DBF0

Data buffer

b0

16 bits

Program memory (ROM)
MOVT DBF, @AR

93

CHAPTER 9 DATA BUFFER (DBF)

[MEMO]

94

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

The ALU performs arithmetic operations, logical operations, bit testings, compare, and rotations of 4-bit data.

10.1 ALU Block Configuration

Figure 10-1 shows the configuration of the ALU block.

As shown, the ALU block consists of an ALU, which processes 4-bit data, temporary registers A and B, which are

peripheral circuits of the ALU, status flip-flops controlling the status of the ALU, and a decimal correction circuit that

is used when a BCD operation is performed.

The status flip-flops include a zero flag FF, carry flag FF, compare flag FF, and BCD flag FF, as shown in Figure

10-1.

The status flip-flops correspond to the zero (Z), carry (CY), compare (CMP), and BCD (BCD) flags of the program

status word (PSWORD: addresses 7EH and 7FH) of the system registers on a one-to-one basis.

10.2 ALU Block Function

The ALU performs arithmetic operation, logical operation, bit testing, compare, or rotation processing, depending

on the instructions written to the program. Table 10-1 lists the operation, testing, and rotation instructions.

By executing each of the instructions listed in this table, operation in 4-bit units, testing, rotation processing, or 1-

digit decimal operation can be executed with a single instruction.

10.2.1 ALU function

Arithmetic operations include addition and subtraction. An arithmetic operation can be executed between the

contents of a general register and those of the data memory, or between the contents of the data memory and

immediate data. In addition, an arithmetic operation can be executed in binary number in 4-bit units, or in decimal

number in 1-digit units (BCD operation).

Logical operations include logical product (AND), logical sum (OR), and exclusive logical sum (XOR). A logical

operation can be executed between the contents of a general register and those of the data memory, or between the

contents of the data memory and immediate data.

Bit testing is to test whether one of the bits of the 4-bit data in the data memory is “0” or “1”.

Comparison is to compare the contents of the data memory with immediate data to judge whether one data is “equal

to”, “not equal to”, “greater than”, or “less than” the other.

Rotation processing is to shift the 4-bit data of a general register 1 bit toward the least significant bit direction

(rotation to the right).

95

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

Figure 10-1. Configuration of ALU Block

Temporary
register A

ALU
· Arithmetic operation
· Logical operation
· Bit testing
· Compare
· Rotation processing

Temporary
register B

Status
flip-flops

Decimal correction
circuit

Data bus

Address 7EH 7FH

Name

Bit

Flag

b0

BCD

b3

CMP

b2

CY

b1

Z

b0

IXE

Program status word
(PSWORD)

Status Flip-flop

BCD
fIag
FF

CMP
fIag
FF

CY
fIag
FF

Z
fIag
FF

Indicates result of arithmetic operation is 0

Stores carry or borrow resulting from
arithmetic operation

Specifies whether result of arithmetic
operation is stored

Specifies whether decimal correction is
performed for arithmetic operation

Functional Outline

96

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

[MEMO]

97

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

Table 10-1. ALU Processing Instructions (1/2)

ALU Function Instruction Operation

ADD r, m (r) ← (r) + (m)

ADD m, #n4 (m) ← (m) + n4

ADDC r, m (r) ← (r) + (m) + CY

ADDC m, #n4 (m) ← (m) + n4 + CY

SUB r, m (r) ← (r) – (m)

SUB m, #n4 (m) ← (m) – n4

SUBC r, m (r) ← (r) – (m) – CY

SUBC m, #n4 (m) ← (m) – n4 – CY

OR r, m (r) ← (r) ∨ (m)

OR m, #n4 (m) ← (m) ∨ n4

AND r, m (r) ← (r) ∧ (m)

AND m, #n4 (m) ← (m) ∧ n4

XOR r, m (r) ← (r) ∨ (m)

XOR m, #n4 (m) ← (m) ∨ n4

True SKT m, #n
CMP ← 0, if (m) ∧ n = n,

then skip

False SKF m, #n
CMP ← 0, if (m) ∧ n = 0,

then skip

Equal to SKE m, #n4 (m) – n4, skip if zero

SKNE m, #n4 (m) – n4, skip if not zero

SKGE m, #n4 (m) – n4, skip if not borrow

SKLT m, #n4 (m) – n4, skip if borrow

RORC r
→ CY → (r) b3 → (r) b1 → (r) b2 → (r) b0

Remarks

Adds general register and data memory contents, and

stores result to general register

Adds data memory and immediate data contents, and

stores result to data memory

Adds general register and data memory contents with

CY flag, and stores result to general register

Adds data memory and immediate data contents with

CY flag, and stores result to data memory

Subtracts data memory contents from general register

contents, and stores result to general register

Subtracts immediate data from data memory contents,

and stores result to data memory

Subtracts data memory contents from general register

contents with CY flag, and stores result to general register

Subtracts immediate data and CY flag from data memory

contents, and stores result to data memory

ORs general register and data memory contents, and

stores result to general register

ORs data memory contents and immediate data, and

stores result to data memory

ANDs general register and data memory contents, and

stores result to general register

ANDs data memory contents and immediate data, and

stores result to data memory

XORs general register and data memory contents, and

stores result to general register

XORs data memory contents and immediate data, and

stores result to data memory

Skips if all bits of data memory contents specified by

n are True (1). Result is not stored

Skips if all bits of data memory contents specified by

n are False (0). Result is not stored

Skips if data memory contents are equal to immediate

data. Result is not stored

Skips if data memory contents are not equal to imme-

diate data. Result is not stored

Skips if data memory contents are greater than imme-

diate data. Result is not stored

Skips if data memory contents are less than immediate

data. Result is not stored

Rotates general register contents to right with CY flag,

and stores result to general register

Not
equal
to

Greater
than

Less
than

Right
rotation

Rotation

Compare

Bit
testing

Addi-
tion

Sub-
traction

Arith-
metic

OR

AND

XOR

Logical

98

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

Value of Value of Operation CY Flag Z Flag Modification

BCD Flag CMP Flag when IXE = 1

0 0 Binary operation. Set if operation result is Executed

Result is stored. 0000B; otherwise, reset

0 1 Binary operation. Retains status if operation

Result is not stored. result is 0000B; otherwise, reset

1 0 BCD operation. Set if operation result is

Result is stored. 0000B; otherwise, reset

1 1 BCD operation. Retains status if operation

Result is not stored. result is 0000B; otherwise, reset

Don’t care Don’t care Not affected Don’t care Don’t care Executed

(retained) (retained) (retained) (retained)

Don’t care Reset Not affected Don’t care Don’t care Executed

(retained) (retained) (retained)

Don’t care Don’t care Not affected Don’t care Don’t care Executed

(retained) (retained) (retained) (retained)

Don’t care Don’t care Not affected Don’t care Executed

(retained) (retained) (retained)

Table 10-1. ALU Processing Instructions (2/2)

ALU Function Difference in Operation Because of Program Status Word (PSWORD)

Comparison

Bit testing

Logical

operation

Rotation

Arithmetic

operation

Set when

carry or

borrow

occurs;

otherwise,

reset

Value of b0

of general
register

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

99

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.2.2 Functions of temporary registers A and B

The temporary registers A and B are necessary for processing 4-bit data at one time, and temporarily store data

to be processed and data processing.

10.2.3 Status flip-flop functions

The status flip-flops control the operations of the ALU and store the status of the processed data. Since these flip-

flops correspond to the flags of the program status word (PSWORD) on a one-to-one basis, they can be manipulated

by manipulating the system register. Each flag of the program status word has the following functions:

(1) Z flag

This flag is set to 1 if the result of an arithmetic operation is 0000B; otherwise, it is reset to 0.

However, the condition under which this flag is set to 1 differs depending on the status of the CMP flag, as

follows:

(i) When CMP flag = 0

The Z flag is set to 1 if the result of an operation is 0000B; otherwise, it is reset to 0.

(ii) When CMP flag = 1

The Z flag retains the previous status if the result of an operation is 0000B; otherwise, it is reset to 0.

The flag is not affected by an operation other than arithmetic operations.

(2) CY flag

This flag is set to 1 if a carry or borrow occurs as a result of an arithmetic operation; otherwise, it is reset to

0.

If an arithmetic operation executed involves a carry or borrow, the content of the CY flag is reflected on the

least significant bit of the execution result.

When rotation processing (RORC instruction) is executed, the content of the CY flag at that time is loaded to

the most significant bit (b3) position of a general register, and the content of the least significant bit of the

general register is loaded to the CY flag.

The CY flag is not affected by any operation other than arithmetic operation and rotation processing.

(3) CMP flag

The result of an arithmetic operation executed when the CMP flag is set to 1 is not stored in a general register

or data memory.

If a bit judgment instruction is executed, the CMP flag is reset to 0.

This flag does not affect the compare and logical operations, and rotation processing.

(4) BCD flag

When the BCD flag is set to 1, the results of all the arithmetic operations executed are corrected to decimal.

When this flag is reset to 0, operation is performed in binary 4-bit.

The BCD flag does not affect the logical operation, bit testing, compare, and rotation processing.

The values of these flags can be changed by directly manipulating the program status word. At this time, the value

of the corresponding status flip-flop is changed accordingly.

10.2.4 Binary 4-bit operation

An arithmetic operation is executed in binary and in 4-bit units when the BCD flag is 0.

100

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.2.5 BCD operation

When the BCD flag is 1, the arithmetic operation is performed in decimal format. The differences between the binary

4-bit operation and BCD operation are shown in Table 10-2. If the result of a decimal correction operation is more

than 20, of if the result of a decimal subtraction is other than –10 to +9, data for more than 1010B (0AH) is stored

in the data memory (shaded part in Table 10-2).

Table 10-2. Results for Binary 4-bit and BCD Operations

Result
Binary 4-bit Addition BCD Addition

CY Result CY Result

0 0 0000 0 0000

1 0 0001 0 0001

2 0 0010 0 0010

3 0 0011 0 0011

4 0 0100 0 0100

5 0 0101 0 0101

6 0 0110 0 0110

7 0 0111 0 0111

8 0 1000 0 1000

9 0 1001 0 1001

10 0 1010 1 0000

11 0 1011 1 0001

12 0 1100 1 0010

13 0 1101 1 0011

14 0 1110 1 0100

15 0 1111 1 0101

16 1 0000 1 0110

17 1 0001 1 0111

18 1 0010 1 1000

19 1 0011 1 1001

20 1 0100 1 1110

21 1 0101 1 1111

22 1 0110 1 1100

23 1 0111 1 1101

24 1 1000 1 1110

25 1 1001 1 1111

26 1 1010 1 1100

27 1 1011 1 1101

28 1 1100 1 1010

29 1 1101 1 1011

30 1 1110 1 1100

31 1 1111 1 1101

Result
Binary 4-bit Addition BCD Addition

CY Result CY Result

0 0 0000 0 0000

1 0 0001 0 0001

2 0 0010 0 0010

3 0 0011 0 0011

4 0 0100 0 0100

5 0 0101 0 0101

6 0 0110 0 0110

7 0 0111 0 0111

8 0 1000 0 1000

9 0 1001 0 1001

10 0 1010 1 1100

11 0 1011 1 1101

12 0 1100 1 1110

13 0 1101 1 1111

14 0 1110 1 1100

15 0 1111 1 1101

–16 1 0000 1 1110

–15 1 0001 1 1111

–14 1 0010 1 1100

–13 1 0011 1 1101

–12 1 0100 1 1110

–11 1 0101 1 1111

–10 1 0110 1 0000

–9 1 0111 1 0001

–8 1 1000 1 0010

–7 1 1001 1 0011

–6 1 1010 1 0100

–5 1 1011 1 0101

–4 1 1100 1 0110

–3 1 1101 1 0111

–2 1 1110 1 1000

–1 1 1111 1 1001

101

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.2.6 ALU block processing sequence

When an arithmetic operation, logical operation, bit testing, compare, or rotation processing instruction is executed

on the program, the data to be operated, tested, or processed and processing data are temporarily stored in temporary

registers A and B.

The data to be processed is the contents of a general register or data memory addressed by the first operand of

the instruction, and is 4-bit data. The processing data is the contents of the data memory addressed by the second

or immediate data directly specified by the second operand, and is 4-bit data.

Take the following instruction for example:

ADD r, m

Second operand

First operand

The data to be processed is the contents of a general register addressed by r, and the processing data is the

contents of the data memory addressed by m.

ADD m, #n4

The data to be processed by this instruction is the contents of the data memory addressed by m, and the processing

data is immediate data specified by #n4.

RORC r

With the following rotation processing instruction, only the data to be processed is necessary because the

processing method is determined, and the data to be processed is the contents of a general register addressed by

r:

The data stored in temporary registers A and B are operated arithmetically or logically, tested, compared, or rotated

according to the instruction executed. If an arithmetic operation, logical operation, or rotation processing instruction

has been executed, the data processed by the ALU is stored in a general register or the data memory addressed by

the first operand of the instruction, and the operation is finished. If a bit testing or compare instruction is executed,

the next instruction on the program is skipped (i.e., executed as an NOP instruction) depending on the result of the

processing performed by the ALU, and the operation is finished.

Bear in mind the following points when using the ALU block:

(1) Arithmetic operations are affected by the CMP and BCD flags of the program status word.

(2) Logical operations are not affected by the CMP and BCD flags of the program status word, and do not affect

the Z and CY flags.

(3) The bit testing instruction resets the CMP flag of the program status word.

(4) Arithmetic and logical operations, bit testing, compare, and rotation processing are modified by the index

register if the IXE flag of the program status word is set to 1.

102

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.3 Arithmetic Operation (Binary 4-bit addition/subtraction and BCD addition/subtraction)

As shown in Table 10-3, the arithmetic operations are broadly classified into four types: addition, subtraction,

addition with carry, and subtraction with borrow. These operations are performed by “ADD”, “ADDC”, “SUB”, and

“SUBC” instructions, respectively.

These instructions are also classified into addition or subtraction between a general register and data memory,

and that between the data memory and immediate data. Whether the operation is executed between a general register

and data memory, or between the data memory and immediate data is determined by the value written as the operand

of the instruction. If the operand is “r, m”, addition or subtraction is executed between a general register and the data

memory; if the operand is “m, #n4”, the operation is between the data memory and immediate data.

The arithmetic operation instruction is affected by the status flip-flops, that is, the program status word (PSWORD)

of the system registers. The BCD flag of the program status word specifies whether the operation is executed in binary

and 4-bit units or in BCD, and the CMP flag specifies that the result of the operation is not stored anywhere.

10.3.1 through 10.3.4 describe the relations between each arithmetic operation instruction and the program status

word.

Table 10-3. Arithmetic Operation Instructions

Without carry General register and data memory ADD r, m

Add
ADD Data memory and immediate data ADD m, #n4

Add w/carry General register and data memory ADDC r, m

Arithmetic operation
ADDC Data memory and immediate data ADDC m, #n4

Without borrow General register and data memory SUB r, m

Subtract
SUB Data memory and immediate data SUB m, #n4

Subtract w/borrow General register and data memory SUBC r, m

SUBC Data memory and immediate data SUBC m, #n4

103

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.3.1 Addition/subtraction when CMP = 0, BCD = 0

Addition or subtraction is executed in binary and 4-bit units, and the result is stored in a specified general register

or data memory address.

The CY flag is set to 1 if the result of the operation exceeds 1111B (if a carry occurs) or is less than 0000B (a borrow

occurs); otherwise, it is reset to 0.

If the result of the operation is 0000B, the Z flag is set to 1, regardless of whether a carry or borrow occurs; if the

result is other than 0000B, the Z flag is reset to 0.

10.3.2 Addition/subtraction when CMP = 1, BCD = 0

Addition or subtraction is executed in binary and 4-bit units.

However, the result of the operation is not stored in a general register or data memory address because the CMP

flag is set to 1.

If a carry or borrow occurs as a result of the operation, the CY flag is set to 1; otherwise, the flag is reset to 0.

The Z flag retains the previous status if the result of the operation is 0000B; otherwise, it is reset to 0.

10.3.3 Addition/subtraction when CMP = 0, BCD = 1

A BCD operation is executed.

The result of the operation is stored in a specified general register or data memory address. The CY flag is set

to 1 if the result exceeds 1001B (9D) or is less than 0000B (0D), and is reset to 0 if the result is in the range of 0000B

(0D) to 1001B (9D).

The Z flag is set to 1 if the result is 0000B (0D); otherwise, it is reset to 0.

The BCD operation is executed by converting the result of an operation executed in binary into decimal number

by using the decimal correction circuit. For details on this binary-to-decimal conversion, refer to Table 10-2 Results

for Binary 4-bit and BCD Operations .

To execute a BCD operation correctly, therefore, keep in mind the following points:

(1) The result of addition must be 0D to 19D.

(2) The result of subtraction must be 0D to 9D or –10 to –1D.

The value range of 0D to 19D is determined by giving consideration to the CY flag, and is in binary:

0,0000B to 1,0011B

CY CY

Likewise, the range of –10D to –1D is:

1,0110B to 1,1111B

CY CY

If a BCD operation is executed without the above conditions (1) and (2) satisfied, the CY flag is set to 1, and data

greater than 1010B (0AH) is output as a result.

104

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.3.4 Addition/subtraction when CMP = 1, BCD = 1

A BCD operation is performed.

The result of the operation is not stored in a general register or data memory address.

Therefore, the operation to be performed when the CMP flag is 1 and that performed when the BCD flag is 1 are

performed at the same time.

Example MOV RPL, #0001B ; Sets BCD flag to (1)

MOV PSW, #1010B ; Sets CMP and Z flags to 1 and resets CY flag to (0)

SUB M1, #0001B ; 〈1〉
SUBC M2, #0010B ; 〈2〉
SUBC M3, #0011B ; 〈3〉

At this time, the contents of the 12 bits of M3, M2, and M1 can be compared with immediate data 321 in decimal

number.

10.3.5 Notes on using arithmetic operation instruction

When an arithmetic operation is executed to the program status word (PSWORD), note that the result of the

operation is stored in the program status word.

The CY and Z flags of the program status word are usually set or reset as a result of an arithmetic operation. If

an arithmetic operation is executed to the program status word, however, the result is stored to the program status

word, making it impossible to test occurrence of a carry or borrow, or whether the result is zero.

When the CMP flag is set to 1, however, the result is not stored in the program status word, and the CY and Z flags

are set or reset as usual.

10.4 Logical Operation

As logical operations, logical sum (OR), logical product (AND), and exclusive logical OR (XOR) can be executed

as shown in Table 10-4.

The logical operations are classified into these three types and are implemented by the “OR”, “AND”, and “XOR”

instructions.

These instructions are also classified into an operation executed between a general register and data memory,

and that between the data memory and immediate data. Whether the operation is executed between a general register

and data memory, or between the data memory and immediate data is determined depending on the value written

as the operand of the instruction, i.e., whether “r, m” or “m, #n4” is described as the operand, like the arithmetic

operation instruction.

The logical operation is not affected by the BCD and CMP flags of the program status word (PSWORD). It does

not affect the CY and Z flags. However, the operation is subject to modification by the index register if the index enable

flag (IXE) is set to 1.

105

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

Table 10-4. Logical Operation Instructions

Logical sum General register and data memory OR r, m

OR Data memory and immediate data OR m, #n4

Logical operation
Logical product General register and data memory AND r, m

AND Data memory and immediate data AND m, #n4

Exclusive Logical product General register and data memory XOR r, m

XOR Data memory and immediate data XOR m, #n4

Table 10-5. Logical Operation Truth Table

Logical product Logical sum Exclusive logical sum

C = A AND B C = A OR B C = A XOR B

A B C A B C A B C

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

10.5 Bit Testing

As shown in Table 10-6, bit testing can be classified into True bit (1) testing and False bit (0) testing.

These judgments are made respectively by the “SKT” and “SKF” instructions.

These instructions can be executed to only the data memory.

Bit testing is not affected by the BCD flag of the program status word (PSWORD). It does not affect the CY and

Z flags. However, the CMP flag is reset to 0 when the “SKT” or “SKF” instruction is executed. Modification is made

by the index register if the instruction is executed while the index enable flag (IXE) is set to 1. For details on modification

by the index register, refer to CHAPTER 6 SYSTEM REGISTER (SYSREG).

10.5.1 and 10.5.2 describe True bit (1) testing and False bit (0) testing, respectively.

Table 10-6. Bit Testing Instructions

True bit (1) testing

Bit testing
SKT m, #n

False bit (0) testing

SKF m, #n

106

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.5.1 True bit (1) testing

The True bit (1) testing instruction, “SKT m, #n”, tests whether bit(s) specified by n of the 4 bits of a data memory

address is “True (1)”. If all the bits specified by n is “True (1)”, the next instruction is skipped.

Example MOV M1, #1011B

SKT M1, #1011B ; <1>

BR A

BR B

SKT M1, #1101B ; <2>

BR C

BR D

In <1>, execution branches to B because all the bits 3, 1, and 0 of M1 are True (1).

In <2>, the bits 3, 2, and 0 of M1 are tested, and execution branches to C because bit 2 is False (0).

10.5.2 False bit (0) testing

The False bit (0) testing instruction, “SKF m, #n”, tests whether bit(s) specified by n of the 4 bits of a data memory

address is “False (0)”. If all the bits specified by n is “False (0)”, the next instruction is skipped.

Example MOV M1, #1001B

SKF M1, #0110B ; <1>

BR A ;

BR B ;

SKF M1, #1110B ; <2>

BR C ;

BR D ;

In <1>, execution branches to B because both the bits 2 and 1 of M1 are False (0).

In <2>, the bits 3, 2, and 0 of M1 are tested, and execution branches to C because bit 3 of M1 is True

(1).

107

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.6 Compare

As shown in Table 10-7, the compare operations are divided into four types: “equal to”, “not equal to”, “greater than”,

and “less than”.

To make these comparisons, the “SKE”, “SKNE”, “SKGE”, and “SKLT” instructions are used.

These instructions can be used only to compare the contents of a data memory address with immediate data. To

compare the contents of a general register and those of a data memory address, use a subtraction instruction with

the CMP and Z flags of the program status word (PSWORD) (refer to 10.3 Arithmetic Operation (Binary 4-bit

addition/subtraction and BCD addition/subtraction)).

Comparison is not affected by the BCD and CMP flags of the program status word. It does not affect the CY and

Z flags.

10.6.1 through 10.6.4 describe comparison of “equal to”, “not equal to”, “greater than”, and “less than”, respectively.

Table 10-7. Compare Instructions

Equal to

SKE m, #n4

Not equal to

Compare
SKNE m, #n4

Greater than

SKGE m, #n4

Less than

SKLT m, #n4

108

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.6.1 Comparison of “Equal to”

The “SKE m, #n4” instruction tests whether the contents of a specified data memory address are “equal to” specified

immediate data.

If the data memory contents are “equal to” the immediate data, the instruction next to this instruction is skipped.

Example MOV M1, #1010B

SKE M1, #1010B ; <1>

BR A

BR B

;

SKE M1, #1000B ; <2>

BR C

BR D

In <1>, execution branches to B because the contents of M1 are equal to immediate data 1010B.

In <2>, however, execution branches to C because the contents of M1 are not equal to immediate

data 1000B.

10.6.2 Comparison of “Not equal to”

The “SKNE m, #n4” instruction tests whether the contents of a specified data memory address are “not equal to”

specified immediate data.

If the data memory contents are “not equal to” the immediate data, the instruction next to this instruction is skipped.

Example MOV M1, #1010B

SKNE M1, #1000B ; <1>

BR A

BR B

;

SKNE M1, #1010B ; <2>

BR C

BR D

In <1>, execution branches to B because the contents of M1 are not equal to immediate data 1000B.

In <2>, however, execution branches to C because the contents of M1 are equal to immediate data

1010B.

109

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.6.3 Comparison of “Greater than”

The “SKGE m, #n4” instruction tests whether the contents of a specified data memory address are “greater than”

specified immediate data.

If the data memory contents are “greater than” or “equal to” the immediate data, the instruction next to this instruction

is skipped.

Example MOV M1, #1000B

SKGE M1, #0111B ; <1>

BR A

BR B

;

SKGE M1, #1000B ; <2>

BR C

BR D

;

SKGE M1, #1001B ; <3>

BR E

BR F

Because the contents of M1 are 1000B, <1> is judged to be “Greater than”, <2>, “Equal to”, and <3>,

“Less than”, and execution branches to B, D, and E, respectively.

10.6.4 Comparison of “Less than”

The “SKLT m, #n4” instruction tests whether the contents of a specified data memory are “less than” specified

immediate data.

If the data memory contents are “less than” the immediate data, the instruction next to this instruction is skipped.

Example MOV M1, #1000B

SKLT M1, #1001B ; <1>

BR A

BR B

;

SKLT M1, #1000B ; <2>

BR C

BR D

;

SKLT M1, #0111B ; <3>

BR E

BR F

Because the contents of M1 are 1000B, <1> is judged to be “Less than”, <2>, “Equal to”, and <3>,

“Greater than”, and execution branches to B, C, and E, respectively.

110

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.7 Rotation Processing

Rotation processing can be classified into right rotation and left rotation.

To execute the right rotation processing, the “RORC” instruction is used.

This instruction can be executed only to a general register.

The rotation processing by the “RORC” instruction is not affected by the BCD and CMP flags of the program status

word (PSWORD). It does not affect the Z flag.

10.7.1 and 10.7.2 below describe the respective rotation processing.

10.7.1 Right rotation processing

The right rotation processing instruction “RORC r” rotates the contents of a specified general register 1 bit toward

the least significant bit direction.

At this time, the content of the CY flag is written to the most significant bit (bit 3) position of the general register,

and the content of the least significant bit (bit 0) is written to the CY flag.

Examples 1. MOV PSW, #0100B ; Sets CY flag to 1

MOV R1, #1001B

RORC R1

At this time, the processing is performed as follows:

Therefore, right rotation is executed from the CY flag as shown above.

Examples 2. MOV PSW, #0000B ; Resets CY flag to 0

MOV R1, #1000B ; MSB

MOV R2, #0100B

MOV R3, #0010B ; LSB

RORC R1

RORC R2

RORC R3

The above program rotates the 13-bit data of R1, R2, and R3 to the right.

1 1 1 0 0

b3 b2 b1 b0CY flag

111

CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)

10.7.2 Left rotation processing

The left rotation processing can be performed by using the addition instruction “ADDC r, m” as follows:

Example MOV PSW, #0000B ; Resets CY flag to 0

MOV R1, #1000B ; MSB

MOV R2, #0100B

MOV R3, #0010B ; LSB

ADDC R3, R3

ADDC R2, R2

ADDC R1, R1

SKF CY

OR R3, #0001B

The above program rotates the 13-bit data of R1, R2, and R3 to the left.

112

CHAPTER 11 INTERRUPT FUNCTION

CHAPTER 11 INTERRUPT FUNCTION

The interrupt control circuit for the µPD172×× subseries has the following features. It can perform high-speed

interrupt processing:

(1) Accepting each interrupt can be controlled by the interrupt enable flag (INTEF) and interrupt enable flag

(IP×××).

(2) Any interrupt processing start address can be set by a interrupt vector table.

(3) Nesting is enabled.

(4) The interrupt request flag (IRQ×××) can be read/written.

(5) The standby mode (STOP or HALT) can be released by an interrupt request (the releasing condition can also

be selected by the interrupt flag).

Caution Only the BCD, CMP, CY, Z, and IXE flags, and BANK are automatically saved to the stack, up to

three levels, by the hardware durig interrupt processing. When a peripheral hardware unit (such

as the timer or serial interface) is accessed during interrupt processing, the contents of DBF and

WR are not saved by the hardware. It is therefore recommended that DBF and WR be saved to

RAM at the beginning of interrupt processing, and that they be restored immediately before the

end of the interrupt processing.

11.1 Interrupt Control Circuit Configuration

11.1.1 Interrupt control (EI, DI)

To perform interrupt processing in response to an interrupt request, the interrupt must be enabled in advance by

the EI instruction (INTE flag set).

If the interrupt is disabled by executing the DI instruction (INTE flag clear), all the interrupts are kept pending.

11.1.2 Interrupt enable flag (IP ×××)

The interrupt enable flag (IP×××) corresponds to an individual interrupt request flag on a one-to-one basis. When

the interrupt enable flag is set, the corresponding interrupt is enabled. When the interrupt enable flag is reset, the

interrupt is kept pending.

The pending interrupt is set, when the interrupt request has been read. By resetting the set interrupt request, the

interrupt can be released.

11.1.3 Interrupt request flag (IRQ ×××)

The interrupt request flag (IRQ×××) is set, when an interrupt request has been generated. It is automatically reset,

when the interrupt processing is executed.

If the interrupt request flag is reset by an instruction, a vectored interrupt is executed (software interrupt) in the

same manner as when an interrupt has been generated, even if the interrupt has not been generated.

113

CHAPTER 11 INTERRUPT FUNCTION

11.2 Interrupt Sequence

11.2.1 Accepting interrupt

Figure 11-1 shows the timing chart illustrating how an interrupt is accepted.

Figure 11-1 (1) is the timing chart for one type of interrupt.

An interrupt is accepted when all the interrupt request flags (IRQ×××), INTE flag, and interrupt enable flags (IP×××)

are set.

(a) in (1) in the figure is the timing chart if the interrupt request flag (IRQ×××) is set to 1 last, and (b) is the timing

chart if the interrupt enable flag (IP×××) is set to 1 last.

If the last flag is set in the first instruction cycle of the MOVT DBF, @AR instruction or by an instruction that satisfies

the skip condition, the interrupt is accepted in the second cycle of the MOVT DBF, @AR instruction or after the

instruction (NOP) that is skipped has been executed.

The INTE flag is set in the instruction cycle next to the one in which the EI instruction has been executed.

(2) in Figure 11-1 is the timing chart by two or more interrupts.

When two or more interrupts are used, the interrupt assigned the highest priority by hardware is accepted first if

all the interrupt enable flags (IP×××) are set, but the hardware priority can be changed by manipulating the interrupt

enable flags by program.

“Interrupt cycle” in Figure 11-1 is a special cycle in which the interrupt request flag is reset to (0), a vector address

is specified, and the contents of the program counter are saved after the interrupt has been accepted. The interrupt

cycle lasts for the execution time of one instruction.

When interrupt processing is started, one level of the address stack register, which is used to store the return

address of the program, is consumed, and one level of the interrupt stack register, which saves the PSWORD and

BANK of the system registers, is also consumed.

114

CHAPTER 11 INTERRUPT FUNCTION

Figure 11-1. Accepting Interrupt (1/3)

(1) When one type of interrupt (e.g., rising edge of INT pin) is used

(a) When interrupt request flag (IRQ ×××) is set last

<1> When normal instruction is executed on accepting interrupt

<2> When MOVT instruction of instruction satisfying skip condition is executed on accepting

interrupt

INTE

Instruction EI MOV
WR, #0001B

POKE
INTPM, WR

Normal in-
struction

Interrupt
cycIe

INT pin

IRQ flag

IP flag

1 instruction
cycIe

Interrupt
enable period

Interrupt processing
routine

Interrupt accepted

INTE

Instruction EI MOV
WR, #0001B

POKE
INTPM, WR

MOVT DBF, @AR instruction,
or instruction satisfying
skip condition

Interrupt
cycIe

INT pin

IRQ flag

IP flag

Interrupt enable period
Interrupt processing
routine

Interrupt accepted

115

CHAPTER 11 INTERRUPT FUNCTION

Figure 11-1. Accepting Interrupt (2/3)

(b) When interrupt enable flag (IP ×××) is set last

INTE

Instruction EI MOV
WR, #0001B

POKE
INTPM, WR

Interrupt
cycIe

INT pin

IRQ flag

IP flag

Interrupt pending period
Interrupt processing
routine

Interrupt accepted

116

CHAPTER 11 INTERRUPT FUNCTION

Figure 11-1. Accepting Interrupt (3/3)

(2) When two or more interrupts (e.g., INT pin and timer) are used

(a) Hardware priority

(b) Software priority

INTE

Instruction EIMOV
WR, #0011B

POKE
INTPM, WR

Interrupt
cycIe

INT pin

IRQ flag

IRQTM flag

INT pin interrupt
pending period

Timer interrupt
processing

INT pin interrupt accepted

EI Interrupt
cycIe

IP flag

IPTM flag

INT pin interrupt
processing

Timer interrupt pending period

Timer interrupt
accepted

INTE

Instruction EIMOV
WR, #0010B

POKE
INTPM, WR

Interrupt
cycIe

INT pin

IRQ flag

IRQTM flag

Timer interrupt
pending period

INT interrupt
processing

Timer interrupt accepted

EI

IP flag

IPTM flag

Timer interrupt processing

INT pin interrupt
accepted

MOV
WR, #0001B

POKE
INTPM, WR

Interrupt
cycIe

RETI

INT pin interrupt pending period

117

CHAPTER 11 INTERRUPT FUNCTION

Figure 11-2. Interrupt Processing Sequence

11.2.2 Returning from interrupt routine

To return execution from the interrupt routine, the RETI instruction is used. In the instruction cycle of this instruction,

the following processing is performed:

Interrupt request occurs

Set lRQxxx

IPxxx set ?
NO

Pending until IPxxx setYES

EI
instruction executed?

(INTE = 1?)

NO

Pending until EI
instruction executed

YES

Clear INTE flag and IRQxxx
corresponding to accepted interrupt

Decrements value of stack pointer by 1
(SP – 1)

Save program counter contents to stack
specified by stack pointer

Load vector address to program counter

Save contents of RSWORD or BANK to interrupt
stack register

Vecfored interrupt processing

118

CHAPTER 11 INTERRUPT FUNCTION

Figure 11-3. Returning from Interrupt Processing

Caution The INTE flag is not set by the RETI instruction.

To process a pending interrupt after finishing certain interrupt processing, execute the EI

instruction immediately before the RETI instruction to set the INTE flag to (1).

If the RETI instruction is executed following the EI instruction, no interrupt is accepted in between

the EI and RETI instructions. This is because the INTE flag is designed to be set after the

execution of the instruction that follows has been completed.

Example

Load contents of stack specified
by stack pointer to program counter

Increments value of stack
pointer by 1

RETI instruction executed

Load contents of interrupt stack
register to PSWORD or BANK

EI instruction executed

Timer interrupt occurs

External interrupt occurs

Timer interrupt occurs

(pending)

(pending)

Single interrupt

Timer interrupt processing

EI
RETI

RETI

External interrupt processing

119

CHAPTER 11 INTERRUPT FUNCTION

[MEMO]

120

CHAPTER 12 STANDBY FUNCTION

CHAPTER 12 STANDBY FUNCTION

The µPD172×× subseries is provided with a standby function that reduces the power consumption further from the

level peculiar to the CMOS process.

12.1 Function Outline

The µPD172×× subseries standby function is implemented in two modes: STOP and HALT modes.

In the STOP mode, the main clock oscillator circuit is stopped. In this mode, the CPU only consumes leakage

current. Therefore, this mode is useful for retention of the data memory contents, without operating the CPU.

In the HALT mode, the main clock oscillator circuit continues oscillating, but the system clock supply is stopped.

Consequently, the CPU operation is stopped. The power consumption in the HALT mode is not so low as in the STOP

mode, but the HALT mode is useful in applications, where the ordinary operation mode must be restored immediately,

when an interrupt request has been issued.

The contents are retained for the data memory, registers, and the output latches of the output ports, immediately

before the standby mode, regardless of whether it is the STOP or HALT mode. Therefore, set the I/O ports statuses

in advance, in such a manner that the power consumption for the overall system can be minimized.

Table 12-1. Status in Standby Mode

STOP Mode HALT Mode

Instruction STOP HALT

Main clock oscillator circuit Stops Continues

Subclock oscillator circuit Continues

Watch timer Can operate if subclock oscillates Can operate

Serial interface
Can operate if external SCK is specified

Can operate
as serial clock

Timer/counter
Can operate if external clock input is

Can operate
specified

CPU Stops

Data memory Retains data

Control register Retains data

Output port Retains output data

Caution The STOP instruction is invalid in a system that operates only on the subsystem clock.

121

CHAPTER 12 STANDBY FUNCTION

12.2 Setting and Releasing STOP Mode

12.2.1 Setting STOP mode

To set the STOP mode, use the STOP instruction. The STOP instruction can be executed only when the main

clock is used as the system clock. If the STOP instruction is executed, when the subclock is used as the system clock,

the STOP instruction is treated as a NOP instruction, and the STOP mode is not set.

The STOP instruction is also treated as an NOP instruction if executed when the STOP mode releasing condition

has been satisfied, and the STOP mode is not set.

The STOP mode releasing condition can be specified by the STOP instruction operand. For the relations between

the STOP instruction operand and releasing condition, refer to the Data Sheet for each device.

12.2.2 Operation when STOP mode is released

When the standby releasing condition, specified by the STOP instruction operand, has been satisfied, the following

operations are performed after the mode has been released:

<1> IRQTM is reset.

<2> The basic interval timer (or watch timer counter) and watchdog timer are started (not reset).

<3> The 8-bit timer/counter is reset and started.

<4> The instruction next to “STOP 8H” or the interrupt vector address branch instruction is executed when the

value of the 8-bit counter coincides with the value of the modulo register (IRQTM is set).

The oscillation circuit is stopped when the STOP instruction is executed (i.e., when the STOP mode is set), and

oscillation is not resumed until the STOP mode is released. After the STOP mode has been released, the HALT mode

is set. Set the time at which the HALT mode is to be released by using the timer with modulo function.

Caution Set the 8-bit modulo register before executing the STOP instruction.

122

CHAPTER 12 STANDBY FUNCTION

Figure 12-1. Operation after Releasing STOP Mode

(1) If released by RESET input

(2) If released by other than RESET

Remark The broken line indicates the case that the interrupt request is accepted after releasing the standby.

STOP instruction execution

RESET signal

Oscillation
stabilization

wait time

STOP modeOperation mode Reset mode HALT mode Operation mode

Oscillation stop OscillationOscillation
Main clock

Standby
release signal

STOP
instruction

STOP modeOperation mode Operation mode

OscillationMain clock

HALT mode

Oscillation stopOscillation

Wait
(Time set by TM0M)

123

CHAPTER 12 STANDBY FUNCTION

12.3 Setting and Releasing HALT Mode

12.3.1 Setting HALT mode

To set the HALT mode, use the HALT instruction.

The HALT mode releasing condition can be specified by the HALT instruction operand. For the relations between

the operand of the HALT instruction and the releasing conditions, refer to the Data Sheet for each device.

12.3.2 Operation after releasing HALT mode

The following operations are performed, when the standby mode releasing condition, specified by the HALT

instruction operand, has been satisfied:

Figure 12-2. Operation after Releasing HALT Mode

(1) If released by RESET input

(2) If released by other than RESET input

Remark The broken line indicates the case that the interrupt request is accepted after releasing the standby.

HALT instruction execution

RESET signal

Oscillation
stabilization

wait time

HALT modeOperation mode Reset mode HALT mode Operation mode

Oscillation stop OscillationOscillation
Main clock

Standby
release signal

HALT
instruction

HALT modeOperation mode Operation mode

OscillationMain clock
Subclock

124

CHAPTER 13 RESET FUNCTION

CHAPTER 13 RESET FUNCTION

13.1 Reset by RESET Pin

When a low-level signal has been input to the RESET pin, the system is reset.

Be sure to reset the system at least once after you turn on the power, because the operation of the internal circuits

will be undefined.

When the system has been reset, the following circuits are initialized:

(1) Program counter is reset to 0000H.

(2) Control registers are initialized.

The initial values of the control registers differ, depending on the device involved. Refer to the Data Sheet

for each device.

(3) Data buffer (DBF) is initialized.

(4) Peripheral hardware is initialized.

When the RESET pin is made high, the main clock starts oscillating. After the wait time for oscillation stabilization,

the program execution is started from address 0.

Figure 13-1. Reset Operation by RESET Input

RESET signal

Oscillation
stabilization

wait time

Operation mode or
standby mode

Reset mode HALT mode Operation mode

125

CHAPTER 13 RESET FUNCTION

13.2 Watchdog Function (WDOUT output)

The µPD172×× subseries microcomputers can check the watchdog timer and stack level when the RESET pin and

WDOUT pin are connected, as a watchdog function that prevents program hang up. Therefore, be sure to use the

microcomputers with the RESET and WDOUT pins connected.

13.2.1 Reset by watchdog timer (connect RESET and WDOUT pins)

If the watchdog timer is activated while the program is executed, a low level is output to the WDOUT pin, and the

program counter is reset to 0.

If the watchdog timer is not reset for a fixed period, therefore, the program can be executed starting from address

0H.

When developing a program, reset the watchdog timer (i.e., set the WDTRES flag) at intervals of within 340 ms

(at fX = 4 MHz).

13.2.2 Reset by stack pointer (connect RESET and WDOUT pins)

If the address stack value reaches a value at which no stack pointer is mounted during the program execution,

a low level is output to the WDOUT pin, and the program counter is reset to 0000H.

13.3 Low Voltage Detection Circuit (connect RESET and WDOUT pins)

The low voltage detection circuit outputs a low level from the WDOUT pin to initialize (reset) the system to prevent

program hang up that may take place when the battery is exchanged, if the circuit detects a low voltage.

With the µPD17225, 17226, 17227 and 17228, a low voltage detection circuit can be set arbitrarily by mask option.

For details, refer to the Data Sheets of the respective models.

13.4 Notes on Using INT and RESET Pins

The INT and RESET pins have a function to set a test mode in which the internal operations of the microcontroller

is tested (for IC test only), in addition to the pin function.

If a voltage exceeding VDD is applied to either of these pins, the test mode is set. This means that if a noise exceeding

VDD is applied to either of these pins while the microcomputer is operating normally, the test mode is accidentally set,

hindering the normal operation.

This may take place especially when the wiring length of the INT and RESET pins is long, because such a long

wiring is susceptible to noise.

Therefore, keep the wiring length as short as possible to prevent the noise. Taking preventive measures against

noise by using external components as shown below is also recommended.

• Connect a diode having a low V F across INT and • Connect a capacitor across INT and RESET,

RESET, and V DD and V DD

INT, RESET

VDD

VDD

Low VF diode

INT, RESET

VDD

VDD

126

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

Five one-time PROM models in the µPD172×× subseries are available: µPD17P203A, 17P204, 17P207, and

17P218. The program memories for these models are one-time PROMs, whose contents can be electrically written.

These one-time PROMs use the pins shown in Table 14-1 to write and verify data. Note that there is no address

pin. Instead, the address is mPDated by clock input from the CLK pin.

Caution The INT/V PP pin is used as the V PP pin in the program write/verify mode. If a voltage of V DD+0.3

V or higher is applied to the INT/V PP pin in the normal operation mode, the microcontroller may

malfunction. Take care to protect this pin from damage.

Table 14-1. Pins Used to Write and Verify Program Memory

Pin Function

VPP Applies program voltage (Apply +12.5 V)

VDD Supplies voltage (Supply +6 V)

CLK
Inputs clock that updates address.

Updates program memory address when pulse is input to this pin four times

MD0-MD3 Selects operation mode

D0-D7 Inputs/outputs 8-bit data

14.1 Differences between Mask ROM and One-Time PROM Models

The µPD17P2×× is a product replacing the program memory of the mask ROM model µPD172×× subseries with

a one-time PROM.

Tables 14-3 through 14-7 show the differences between the mask ROM models and one-time PROM models.

Each model differs from the others in terms of ROM and RAM capacities, and whether mask options can be

specified, but the CPU function and internal peripheral hardware are the same. The one-time PROM models in the

µPD172×× subseries and the corresponding mask ROM models are listed in Table 14-2.

Note that models with a subclock oscillation circuit cannot be used with only the main clock oscillation

circuit. Be sure to use the subclock oscillation circuit also.

Table 14-2. One-Time PROM Models and Corresponding Mask ROM Models

One-time PROM Model Mask ROM Model

µPD17P203A µPD17203A

µPD17P204 µPD17204

µPD17P207 µPD17201A, 17207

µPD17P218 µPD17225, 17226, 17227, 17228

127

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

Table 14-3. Differences between µPD17P203A and µPD17203A

Parameter µPD17P203A-001 µPD17P203A-002 µPD17P203A-003 µPD17203A

ROM
One-time PROM Mask ROM

4096 × 16 bits

Pull-up resistor of RESET pin None

Pull-up resistor of P0A, P0B pin
Provided Provided

None
Mask option

Main clock oscillation circuit

Subclock oscillation circuit None Provided

VPP, PROM program pin Provided None

Table 14-4. Differences between µPD17P204 and µPD17204

Parameter µPD17P204-001 µPD17P204-002 µPD17P204-003 µPD17204

ROM
One-time PROM Mask ROM

7936 × 16 bits

Pull-up resistor of RESET pin None

Pull-up resistor of P0A, P0B pin
Provided Provided

None
Mask option

Main clock oscillation circuit

Subclock oscillation circuit None Provided

VPP, PROM program pin Provided None

Table 14-5. Differences between µPD17P207, µPD17201A, and µPD17207

Parameter µPD17P207-001 µPD17P207-002 µPD17P207-003 µPD17207 µPD17201A

ROM
One-time PROM Mask ROM

4096 × 16 bits 3072 × 16 bits

Pull-up resistor of RESET pin None
None

Main clock oscillation circuit Provided Provided Mask option

Subclock oscillation circuit None Provided

VPP, PROM program pin Provided None

Table 14-6. Differences between µPD17P218, µPD17225, 17226, 17227 and 17228

Parameter µPD17P218 µPD17225 µPD17226 µPD17227 µPD17228

ROM
One-time PROM Mask ROM

8192 × 16 bits 2048 × 16 bits 4096 × 16 bits 6144 × 16 bits 8192 × 16 bits

Pull-up resistor of RESET pin
Provided Mask option

Low-voltage detection circuit

VPP, PROM program pin Provided None

128

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

14.2 Operation Modes for Writing/Verifying Program Memory

The µPD17P2×× is set in a mode in which the program memory can be written or verified after the microcontroller

has been reset (VDD = 5 V, RESET = 0 V) and then +6 V is applied to the VDD pin and +12.5 V is applied to the VPP

pin. This mode is selected as shown in Table 14-8 by the signals input to the MD0-MD3 pins. Connect the pins not

used for writing/verifying the program memory to GND via a pull-down resistor (470 Ω).

Table 14-7. Selecting Operation Modes

Setting Operation Mode
Operation Mode

VPP VDD MD0 MD1 MD2 MD3

H L H L Clears program memory address to 0

+12.5 V +6 V
L H H H Write mode

L L H H Verify modes

H × H H Program inhibit mode

Remark ×: don’t care (L or H)

129

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

14.3 How to Write Program Memory

Data is written to the program memory in the following sequence. The program memory can be written at high

speeds.

(1) Pull down the unused pins through resistors to GND (XOUT pin is open). Make the CLK pin low.

(2) Apply +5 V to the VDD pin. Make the VPP low.

(3) Wait for 10 µs. Then, apply +5 V to the VPP pin.

(4) Set the mode setting pins to the 0 clear mode for the program memory address.

(5) Apply +6 V to the VDD pin and +12.5 V to the VPP pin.

(6) Set the program inhibit mode.

(7) Write data in the 1-ms write mode.

(8) Set the program inhibit mode.

(9) Set the verify mode. If the data has been correctly written, proceed to Step (10). If not, repeat (7) through

(9).

(10) Write data again the same number of times (X) as the data has been written during (7) through (9) above ×
1 ms.

(11) Set the program inhibit mode.

(12) Input a pulse four times to the CLK pin to increment the program memory address by 1.

(13) Repeat (7) through (12) up to the last address.

(14) Set the 0 clear mode for the program memory address.

(15) Change the voltages of VDD pin and VPP pin into 5 V.

(16) Turn off all the power sources.

Steps (2) through (12) above are illustrated in Figure 14-1.

Figure 14-1. Program Memory Writing Sequence

MD0

MD1

MD2

MD3

CLK

D0-D7

GND

Hi-Z
Data input

Hi-Z Data
output

Hi-Z
Data input

Hi-Z

VDD

VPP

VPP

GND

VDD

VDD + 1
VDD

Write Verify Additional write
Address

increment

Reset

Repeated X times

130

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

14.4 How to Read Program Memory

The program memory is read in the following sequence:

(1) Pull down the unused pins through resistors to GND. Make the CLK pin low.

(2) Apply +5 V to the VDD pin. Make the VPP pin low.

(3) Wait for 10 µs. Then, apply +5 V to the VPP pin.

(4) Set the mode setting pins to the 0 clear mode for the program memory address.

(5) Apply +6 V to the VDD pin and +12.5 V to the VPP pin.

(6) Set the program inhibit mode.

(7) Set the verify mode. One data address is output, each time a pulse has been input four times to the CLK pin.

(8) Set the program inhibit mode.

(9) Set the 0 clear mode for the program memory address.

(10) Change the voltages of VDD and VPP pins into 5 V.

(11) Turn off all the power sources.

Steps (2) through (9) above are illustrated in Figure 14-2.

Figure 14-2. Program Memory Reading Sequence

MD0

MD1

MD2

MD3

CLK

D0-D7

GND

Hi-Z
Data output

Hi-Z

VDD

VPP

VPP

GND

VDD

VDD + 1
VDD

Reset

Data output

"L"

131

CHAPTER 14 WRITING AND VERIFYING ONE-TIME PROM

[MEMO]

132

CHAPTER 15 INSTRUCTION SET

CHAPTER 15 INSTRUCTION SET

15.1 Instruction Set Outline

b15

b14 – b11 0 1

BIN HEX

0 0 0 0 0 ADD r, m ADD m, #n4

0 0 0 1 1 SUB r, m SUB m, #n4

0 0 1 0 2 ADDC r, m ADDC m, #n4

0 0 1 1 3 SUBC r, m SUBC m, #n4

0 1 0 0 4 AND r, m AND m, #n4

0 1 0 1 5 XOR r, m XOR m, #n4

0 1 1 0 6 OR r, m OR m, #n4

INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

RETSK

EI

DI

RETI

0 1 1 1 7 PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP

1 0 0 0 8 LD r, m ST m, r

1 0 0 1 9 SKE m, #n4 SKGE m, #n4

1 0 1 0 A MOV @r, m MOV m, @r

1 0 1 1 B SKNE m, #n4 SKLT m, #n4

1 1 0 0 C BR addr (page 0) CALL addr

1 1 0 1 D BR addr (page 1) MOV m, #n4

1 1 1 0 E SKT m, #n

1 1 1 1 F SKF m, #n

133

CHAPTER 15 INSTRUCTION SET

15.2 Legend

AR : Address register

ASR : Address stack register indicated by stack pointer

addr : Program memory address (11 bits, with highest bit fixed to 0)

BANK : Bank register

CMP : Compare flag

CY : Carry flag

DBF : Data buffer

h : Halt release condition

INTEF : Interrupt enable flag

INTR : Register automatically saved to stack when interrupt occurs

INTSK : Interrupt stack register

IX : Index register

MP : Data memory row address pointer

MPE : Memory pointer enable flag

m : Data memory address indicated by mR, mC

mR : Data memory row address (high)

mC : Data memory column address (low)

n : Bit position (4 bits)

n4 : Immediate data (4 bits)

PC : Program counter

p : Peripheral address

pH : Peripheral address (high-order 3 bits)

pL : Peripheral address (low-order 4 bits)

r : General register column address

rf : Register file address

rfR : Register file row address (high-order 3 bits)

rfC : Register file column address (low-order 4 bits)

SP : Stack pointer

s : Stop release condition

WR : Window register

(×) : Contents addressed by ×

134

CHAPTER 15 INSTRUCTION SET

15.3 Instruction List

Instruction Mnemonic Operand Operation
Machine Code

Op Code Operand

ADD
r, m (r) ← (r) + (m) 00000 mR mC r

m, #n4 (m) ← (m) + n4 10000 mR mC n4

ADDC
r, m (r) ← (r) + (m) + CY 00010 mR mC r

m, #n4 (m) ← (m) + n4 + CY 10010 mR mC n4

INC
AR AR ← AR + 1 00111 000 1001 0000

IX IX ← IX + 1 00111 000 1000 0000

SUB
r, m (r) ← (r) – (m) 00001 mR mC r

m, #n4 (m) ← (m) – n4 10001 mR mC n4

SUBC
r, m (r) ← (r) – (m) – CY 00011 mR mC r

m, #n4 (m) ← (m) – n4 – CY 10011 mR mC n4

OR
r, m (r) ← (r) ∨ (m) 00110 mR mC r

m, #n4 (m) ← (m) ∨ n4 10110 mR mC n4

AND
r, m (r) ← (r) ∧ (m) 00100 mR mC r

m, #n4 (m) ← (m) ∧ n4 10100 mR mC n4

XOR
r, m (r) ← (r) ∨ (m) 00101 mR mC r

m, #n4 (m) ← (m) ∨ n4 10101 mR mC n4

SKT m, #n CMP ←0, if (m) ∧ n = n, then skip 11110 mR mC n

SKF m, #n CMP ← 0, if (m) ∧ n = 0, then skip 11111 mR mC n

SKE m, #n4 (m) – n4, skip if zero 01001 mR mC n4

SKNE m, #n4 (m) – n4, skip if not zero 01011 mR mC n4

SKGE m, #n4 (m) – n4, skip if not borrow 11001 mR mC n4

SKLT m, #n4 (m) – n4, skip if borrow 11011 mR mC n4

RORC r
→ CY → (r)b3 → (r) b2 → (r) b1 → (r) b0

00111 000 0111 r

LD r, m (r) ← (m) 01000 mR mC r

ST m, r (m) ← (r) 11000 mR mC r

@r, m if MPE = 1 : (MP, (r)) ← (m) 01010 mR mC r

if MPE = 0 : (BANK, mR, (r)) ← (m)

m, @r if MPE = 1 : (m) ← (MP, (r)) 11010 mR mC r

if MPE = 0 : (m) ← (BANK, mR, (r))

m, #n4 (m) ← n4 11101 mR mC n4

DBF, @AR
SP ← SP – 1, ASR ← PC, PC ← AR,

00111 000 0001 0000
DBF ← (PC), PC ← ASR, SP ← SP +1

PUSH AR SP ← SP – 1, ASR ← AR 00111 000 1101 0000

POP AR AR ← ASR, SP ← SP + 1 00111 000 1100 0000

PEEK WR, rf WR ← (rf) 00111 rfR 0011 rfC

POKE rf, WR (rf) ← WR 00111 rfR 0010 rfC

Note As an exception, two machine cycles are necessary for executing the MOVT instruction.

Addition

Subtraction

Compare

Rotate

Logical

operation

MOVTNote

MOV

Transfer

Test

135

CHAPTER 15 INSTRUCTION SET

Instruction Mnemonic Operand Operation
Op Code

Op Code Operand

GET DBF, p DBF ← (p) 00111 PH 1011 PL

PUT p, DBF (p) ← DBF 00111 PH 1010 PL

BR
addr Note addr

@AR PC ← AR 00111 000 0100 0000

addr
SP ← SP – 1, ASR ← PC,

11100 addr
CALL PC10–0 ← addr, PAGE ← 0

@AR SP ← SP – 1, ASR ← PC, PC ← AR 00111 000 0101 0000

RET PC ← ASR, SP ← SP + 1 00111 000 1110 0000

RETSK PC ← ASR, SP ← SP + 1 and skip 00111 001 1110 0000

RETI PC ← ASR, INTR ← INTSK, SP ← SP + 1 00111 100 1110 0000

EI INTEF ← 1 00111 000 1111 0000

DI INTEF ← 0 00111 001 1111 0000

STOP s STOP 00111 010 1111 s

HALT h HALT 00111 011 1111 h

NOP No operation 00111 100 1111 0000

Note The operation and op code of “BR addr” differs depending on the ROM size of each model, as follows:

Transfer

Branch

Subroutine

Interrupt

Other

operations

(a) µPD17225

Operand Operation Op Code

addr PC10–0

← addr 01100

(b) µPD17201A, 17203A, 17P203A, 17207, 17P207, and 17226

Operand Operation Op Code

addr
PC10–0

← addr, PAGE ← 0 01100

PC10–0

← addr, PAGE ← 1 01101

(c) µPD17227

Operand Operation Op Code

PC10–0

← addr, PAGE ← 0 01100

addr PC10–0

← addr, PAGE ← 1 01101

PC10–0

← addr, PAGE ← 2 01110

(d) µPD17204, 17P218 and 17228

Operand Operation Op Code

PC10–0

← addr, PAGE ← 0 01100

addr
PC10–0

← addr, PAGE ← 1 01101

PC10–0

← addr, PAGE ← 2 01110

PC10–0

← addr, PAGE ← 3 01111

136

CHAPTER 15 INSTRUCTION SET

15.4 Assembler (RA17K) Macro instructions

Legend

flag n : FLG type symbol

< > : Can be omitted

Mnemonic Operand Operation n

Embedded SKTn flag 1, ... flag n if (flag 1) to (flag n)=all “1”, then skip 1 ≤ n ≤ 4

macro SKFn flag 1, ... flag n if (flag 1) to (flag n)=all “0”, then skip 1 ≤ n ≤ 4

SETn flag 1, ... flag n (flag 1) to (flag n) ← 1 1 ≤ n ≤ 4

CLRn flag 1, ... flag n (flag 1) to (flag n) ← 0 1 ≤ n ≤ 4

NOTn flag 1, ... flag n if (flag n)=”0", then (flag n) ← 1 1 ≤ n ≤ 4

if (flag n)=”1", then (flag n) ← 0

INITFLG <NOT> flag 1, if description=NOT flag n, then (flag n) ← 0 1 ≤ n ≤ 4

... <<NOT> flag n> if description=flag n, then (flag n) ← 1

BANKn (BANK) ← n Note

Extension BRX Label Jump Label —

CALLX function-name CALL sub-routine —

INITFLGX <NOT/INV> flag 1, if description = NOT (or INV) ← 0 n ≤ 4

... <NOT/INV> flag n flag, (flag) ← 0

if description = flag, (flag) ← 1

Note n = 0 : µPD17225, µPD17226

n = 0, 1 : µPD17P218, µPD17227, µPD17228

n = 0 - 2: µPD17201A, µPD17203A, µPD17P203A, µPD17204, µPD17P204, µPD17207, µPD17P207

137

CHAPTER 15 INSTRUCTION SET

15.5 Instruction Functions

15.5.1 Addition instructions

(1) ADD r,m Add data memory to general register

<1> OP code

10 8 7 4 3 0

00000 mR mC r

<2> Function

When CMP = 0 (r) ← (r) + (m)

Adds the contents of a specified data memory address to the contents of a specified general register,

and stores the result in the general register.

When CMP = 1 (r) + (m)

The result is not stored in the register, and the carry flag (CY) and Zero flag (Z) are affected according

to the result.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the result of the addition becomes zero, with the compare flag reset (CMP = 0), the zero flag (Z) is set.

If the result of the addition becomes zero, with the compare flag set (CMP = 1), the zero flag (Z) is not

changed.

Addition can be executed in binary or BCD, which can be selected by the BCD flag (BCD) of the PSWORD.

<3> Example 1

To add the contents of address 0.2FH to those of address 0.03H and store the result in address 0.03H

when row address 0 (0.00H-0.0FH) of bank 0 is specified as the general register (RPH=0, RPL=0):

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM003, MEM02F

138

CHAPTER 15 INSTRUCTION SET

Example 2

To add the contents of address 0.2FH to those of address 0.23H and store the result in address 0.23H

when row address 2 (0.20H-0.2FH) of bank 0 is specified as the general register (RPH=0, RPL=4):

(0.23H) ← (0.23H) + (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0Note

MOV RPL, #04H ; General register row address 2

ADD MEM023, MEM02F

Note
Register

RPH RPL

RP

b3Bit

Data 0

b2

0

b1

0

b0

0

b3 b2 b1 b0

B

C

D

Bank

Row address

The assignment of RP (general register pointer) in the system register is as shown above.

Therefore, to set bank 0 and row address 2 in a general register, 00H must be stored in RPH and 04H,

in RPL.

In this case, the arithmetic operations to be performed thereafter are carried out in binary and 4-bit units,

because the BCD (binary coded decimal) flag is reset.

Example 3

To add the contents of address 0.6FH to those of address 0.03H and store the result in address 0.03H:

If IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified

by specifying address 2FH.

(0.03H) ← (0.03H) + (0.6FH)

Address obtained by ORing index register contents 0.40H with

data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

139

CHAPTER 15 INSTRUCTION SET

Example 4

To add the contents of address 0.3FH to those for address 0.03H and store the result in address 0.03H:

If IXE = 1, IXH = 0, IXM = 1, and IXL = 0, i.e., if IX = 0.10H, data memory address 0.3FH can be specified

by specifying address 2FH.

(0.03H) ← (0.03H) + (0.3FH)

Address obtained by ORing index register contents 0.10H with

data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)Note

MOV IXM, #01H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00000010000B(0.10H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00100111111B(0.3FH)

Note

The IX (index pointer) assignment in the system register is as shown above.

Therefore, in order that IX = 0.10H, 00H must be stored in IXH, 01H in IXM, and 00H in IXL.

In this case, since the MPE (memory pointer enable) flag is reset, MP (memory pointer) is invalid for

general register indirect transfer.

<4> Precaution

The first operand for the ADD r, m instruction is the column address of a general register. Therefore, if

the instruction is described as follows, the column address of the general register is 03H:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

ADD MEM013, MEM02F

Means column address of general register.

Low-order 4 bits (03H in this case) are valid.

When CMP flag = 1, the addition result is not stored.

When the BCD flag is 1, the BCD operation result is stored.

Register
IXH IXM

IX

b3Bit

Data

b2

0

b1

0

b0

0

b3 b2 b1 b0

IXL

b3 b2 b1 b0

BankM

P

E
Row address

Column address

0

140

CHAPTER 15 INSTRUCTION SET

(2) ADD m, #n4 Add immediate data to data memory

<1> OP code

10 8 7 4 3 0

10000 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) + n4

Adds the immediate data to the contents of a specified data memory address and stores the results

in the data memory.

When CMP = 1 (m) + n4

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected

according to the result.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the result of the addition becomes zero, with the compare flag reset (CMP = 0), the zero flag (Z) is set.

If the result of the addition becomes zero, with the compare flag set (CMP = 1), the zero flag (Z) is not

changed.

Addition can be executed in binary 4-bit units or BCD, which can be selected by the BCD flag (BCD) of

the PSWORD.

<3> Example 1

To add 5 to the contents of address 0.2FH and store the result in address 0.2FH:

(0.2FH) ← (0.2FH) + 5

MEM02F MEM 0.2FH

ADD MEM02F, #05H

Example 2

To add 5 to the contents of address 0.6FH and store the result in address 0.6FH: At this time, if IXE =

1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified by

specifying address 2FH.

(0.6FH) ← (0.6FH) + 05H

Address obtained by ORing index register contents 0.40H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B(0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

141

CHAPTER 15 INSTRUCTION SET

Example 3

To add 5 to the contents of address 0.2FH and store the result in address 0.2FH: If IXE = 1, IXH = 0, IXM

= 0, and IXL = 0, i.e., if IX = 0.00H, data memory address 0.2FH can be specified by specifying address

2FH.

(2.2FH) ← (0.2FH) + 05H

Address obtained by ORing index register contents 0.00H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B

MOV IXM, #00H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00000000000B(0.00H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00000101111B(0.2FH)

<4> Precaution

When CMP flag = 1, the result of the addition is not stored.

When BCD flag = 1, the result of a BCD operation is stored.

142

CHAPTER 15 INSTRUCTION SET

(3) ADDC r, m Add data memory to general register with carry flag

<1> OP code

10 8 7 4 3 0

00010 mR mC r

<2> Function

When CMP = 0 (r) ← (r) + (m) + CY

Adds the contents of a specified data memory address and the carry flag CY value to the contents of

a general register, and stores the result in the general register specified by r.

When CMP = 1 (r) + (m) + CY

The result is not stored in the register, and the carry flag (CY) and zero flag (Z) are affected by the

result.

You can use this ADDC instruction to easily add, two or more words.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset regardless of the compare flag (CMP).

If the addition results in zero, with the compare flag reset (CMP = 0), the zero flag (Z)is set.

If the result of the addition results in zero, with the compare flag set (CMP = 1), the zero flag (Z) is not

affected.

You can perform addition in binary and 4-bit units or BCD, which you can select by the BCD flag of the

PSWORD.

<3> Example 1

To add the contents of 12-bit addresses 0.2DH through 0.2FH to the 12-bit contents of addresses 0.0DH

through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH when row address

0 in bank 0 (0.00H-0.0FH) is specified as a general register:

0.0FH ← (0.0FH) + (0.2FH)

0.0EH ← (0.0EH) + (0.2EH) + CY

0.0DH ← (0.0DH) + (0.2DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

143

CHAPTER 15 INSTRUCTION SET

Example 2

To shift the 12-bit contents of addresses 0.2DH through 0.2FH 1 bit to the left with the carry flag when

row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register:

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

MOV BANK, #00H ; Data memory bank 0

ADDC MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

Example 3

To add the contents of addresses 0.40H through 0.4FH to the contents of address 0.0FH and store the

result in address 0.0FH:

(0.0FH) ← (0.0FH) + (0.40H) + (0.41H) + ········· + (0.4FH)

MEM00F MEM 0.0FH

MEM000 MEM 0.00H

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ADD MEM00F, MEM000

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKE IXL, #0

JMP LOOP1

Bank 0
Address 0FH

CY
(Carry flag)

Bank 0
Address 0EH

Bank 0
Address 0DH

CY
(Carry flag)

144

CHAPTER 15 INSTRUCTION SET

Example 4

To add the 12-bit contents of addresses 0.40H through 0.42H to the 12-bit contents of addresses 0.0DH

through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) + (0.40H)

(0.0EH) ← (0.0EH) + (0.41H) + CY

(0.0FH) ← (0.0FH) + (0.42H) + CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000 (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00D, MEM000 ; (0.0DH) ← (0.0DH) + (0.40H)

ADDC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) + (0.41H)

ADDC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) + (0.42H)

145

CHAPTER 15 INSTRUCTION SET

(4) ADDC m, #n4 Add immediate data to data memory with carry flag

<1> OP code

10 8 7 4 3 0

10010 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) + n4 + CY

Adds the immediate data to the contents of a specified data memory address, including the carry flag

(CY), and stores the results in the data memory address.

When CMP = 1 (m) + n4 + CY

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected by

the result.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the result of the addition becomes zero, with the compare flag reset (CMP = 0), the zero flag is set.

If the result of the addition becomes zero, with the compare flag set (CMP = 1), the zero flag is not affected.

You can perform addition in binary or BCD, which you can select by the BCD flag of the PSWORD.

<3> Example 1

To add 5 to the 12-bit contents of addresses 0.0DH through 0.0FH and store the result in addresses 0.0DH

through 0.0FH:

(0.0FH) ← (0.0FH) + 05H

(0.0EH) ← (0.0EH) + CY

(0.0DH) ← (0.0DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

ADD MEM00F, #05H

ADDC MEM00E, #00H

ADDC MEM00D, #00H

146

CHAPTER 15 INSTRUCTION SET

Example 2

To add 5 to the 12-bit contents of addresses 0.4DH through 0.4FH and store the result in addresses 0.4DH

through 0.4FH:

(0.4FH) ← (0.4FH) + 05H

(0.4EH) ← (0.4EH) + CY

(0.4DH) ← (0.4DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B(0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00F, #5 ; (0.4FH) ← (0.4FH) + 5H

ADDC MEM00E, #0 ; (0.4EH) ← (0.4EH) + CY

ADDC MEM00D, #0 ; (0.4DH) ← (0.4DH) + CY

(5) INC AR Increment address register

<1> OP code

10 8 7 4 3 0

00111 000 1001 0000

<2> Function

AR ← AR + 1

Increments the contents of the address register (AR).

<3> Example 1

To add 1 to the 16-bit contents of AR3 through AR0 (address registers) in the system register and store

the result in AR3 through AR0:

; AR0 ← AR0 + 1

; AR1 ← AR1 + CY

; AR2 ← AR2 + CY

; AR3 ← AR3 + CY

INC AR

This instruction effect can also be implemented by an addition instruction, as follows:

ADD AR0, #01H

ADDC AR1, #00H

ADDC AR2, #00H

ADDC AR3, #00H

147

CHAPTER 15 INSTRUCTION SET

Example 2

To transfer table data in 16-bit units (1 address) to DBF (data buffer) by using the table reference

instruction (for details, refer to 9.2.3 Table reference):

; Address Table data

010H DW 0F3FFH

011H DW 0A123H

012H DW 0FFF1H

013H DW 0FFF5H

014H DW 0FF11H

:

:

MOV AR3, #0H ; Table data address

MOV AR2, #0H ; Sets 0010H in address register

MOV AR1, #1H

MOV AR0, #0H

LOOP:

MOVT @AR ; Reads table data to DBF

:

:

: ; Processing referencing table data

INC AR ; register by 1

BR LOOP

<4> Precaution

The number of bits of the address registers (AR3, AR2, AR1, and AR0) that can be used differs according

to the model. For details, refer to the Data Sheet for your device.

148

CHAPTER 15 INSTRUCTION SET

(6) INC IX Increment index register

<1> OP code

10 8 7 4 3 0

00111 000 1000 0000

<2> Function

IX ← IX + 1

Increments the contents of the index register (IX).

<3> Example 1

To add 1 to the 12-bit contents of IXH, IXM, and IXL (index registers) in the system register and store the

result in IXH, IXM, and IXL:

; IXL ← IXL + 1

; IXM ← IXM + CY

; IXH ← IXH + CY

; INC IX

You can also execute this instruction by an addition instruction, as follows:

ADD IXL, #01H

ADDC IXM, #00H

ADDC IXH, #00H

Example 2

To clear all the contents of data memory addresses 0.00H through 0.73H to 0 by using the index register:

MOV IXH, #00H ; Sets index register contents to 00H in bank 0

MOV IXM, #00H ;

MOV IXL, #00H

RAM clear:

MEM000 MEM 0.00H

SET1 IXE ; IXE flag ← 1

MOV MEM000, #00H ; Writes 0 to data memory indicated by index register

CLR1 IXE ; IXE flag ← 0

INC IX

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB IXL, #03H ; Checks if index register contents are 73H for bank 0

SUBC IXM, #07H ;

SUBC IXH, #00H ;

SKT1 Z ; Loops until index register contents become 73H for bank 0

BR RAM clear ;

149

CHAPTER 15 INSTRUCTION SET

15.5.2 Subtraction instructions

(1) SUB r, m Subtract data memory from general register

<1> OP code

10 8 7 4 3 0

00001 mR mC r

<2> Function

When CMP = 0 (r) ← (r) – (m)

Subtracts the contents of a specified data memory address from the contents of a specified general

register, and stores the result in the general register.

When CMP = 1 (r) – (m)

The result is not stored in the register, and the carry flag (CY) and zero flag (Z) are affected by the result.

If a borrow has occurred as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag is

reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset, regardless of the compare

flag (CMP).

If the subtraction results in zero, with the compare flag reset (CMP = 0), the zero flag (Z) is set.

If the subtraction results in zero, with the compare flag set (CMP = 1), the zero flag (Z) is not affected.

You can perform subtraction in binary and 4-bit units or BCD, which you can select by the BCD flag of

the PSWORD.

<3> Example 1

To subtract the contents of address 0.2FH from those of address 0.03H and store the result in address

0.03H when the row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register (RPH=0, RPL=0):

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

SUB MEM003, MEM02F

Example 2

To subtract the contents of address 0.2FH from those of address 0.23H and store the result in address

0.23H when row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register (RPH=0, RPL=4):

(0.23H) ← (0.23H) – (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

SUB MEM023, MEM02F

150

CHAPTER 15 INSTRUCTION SET

Example 3

To subtract the contents of address 0.6FH from those of address 0.03H, and store the result in address

0.03H: If IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be

specified by specifying address 2FH.

(0.03H) ← (0.03H) – (0.6FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK,#00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE ← flag 1

SUB MEM003, MEM02F ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

Example 4

To subtract the contents of address 0.3FH from those of address 0.03H and store the result in address

0.03H: If IXE = 1, IXH = 0, IXM = 1, and IXL = 0, i.e., if IX = 0.10H, data memory address 0.3FH can be

specified by specifying address 2FH.

(0.03H) ← (0.03H) + (0.3FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK,#00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)

MOV IXM, #01H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM003, MEM02F ; IX 00000010000B(0.10H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00000111111B(0.3FH)

<4> Precaution

The first operand of the SUB r, m instruction must be a general register address. Therefore, if you make

the following description, address 03H is specified as a register.

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

SUB MEM013, MEM02F

General register address must be within the 00H-0FH range (set register

pointer to other than row address 1).

When CMP flag = 1, the result of the subtraction is not stored.

When the BCD flag = 1, the result of the BCD operation is stored.

151

CHAPTER 15 INSTRUCTION SET

(2) SUB m, #n4 Subtract immediate data from data memory

<1> OP code

10 8 7 4 3 0

10001 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) – n4

Subtracts specified immediate data from the contents of a specified data memory address, and stores

the result in the data memory address.

When CMP = 1 (m) – n4

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected by

the result.

If a borrow has occurred as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag is

reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset regardless of the compare flag

(CMP).

If the subtraction results in zero when the compare flag is reset (CMP = 0), the zero flag is set.

If the subtraction results in zero when the compare flag is set (CMP = 1), the zero flag is not affected.

You can perform subtraction in binary and 4-bit units and BCD, which you can select by the BCD flag for

the PSWORD.

<3> Example 1

To subtract 5 from the address 0.2FH contents and store the result in address 0.2FH:

(0.2FH) ← (0.2FH) – 5

MEM02F MEM 0.2FH

SUB MEM02F, #05H

Example 2

To subtract 5 from the contents of address 0.6FH and store the result in address 0.6FH: At this time, if

IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified

by specifying address 2FH.

0.6FH ← (0.6FH) – 5

Address obtained by ORing index register contents 0.40H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

152

CHAPTER 15 INSTRUCTION SET

Example 3

To subtract 5 from the contents of address 0.2FH and store the result in address 0.2FH: If IXE = 1, IXH

= 0, IXM = 0, and IXL = 0, i.e., if IX = 0.00H, data memory address 0.2FH can be specified by specifying

address 2FH.

(0.2FH) ← (0.2FH) – 5

Address obtained by ORing index register contents 0.00H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK0, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00000000000B(0.00H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00000101111B(0.2FH)

<4> Precaution

When CMP flag = 1, the result of the subtraction is not stored.

When BCD flag = 1, the result of the BCD format operation is stored.

153

CHAPTER 15 INSTRUCTION SET

(3) SUBC r, m Subtract data memory from general register with carry flag

<1> OP code

10 8 7 4 3 0

00000 mR mC r

<2> Function

When CMP = 0 (r) ← (r) – (m) – CY

Subtracts the contents of a specified data memory, including the carry flag (CY), from the contents of

a specified general register, and stores the result in the general register. By using this SUBC

instruction, subtraction of two or more words can be easily carried out.

When CMP = 1 (r) – (m) – CY

The result is not stored in the register, and the carry flag (CY) and zero flag (Z) are affected by the result.

If a borrow has occurred, as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag

is reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the subtraction results in zero when the compare flag is reset (CMP = 0), the zero flag is reset.

If the subtraction results in zero when the compare flag set (CMP = 1), the zero flag is not changed.

You can perform subtraction in binary and 4-bit units or BCD, which you can select by the BCD flag of

the PSWORD.

<3> Example 1

To subtract the 12-bit contents of addresses 0.2DH through 0.2FH from the 12-bit contents of addresses

0.0DH through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH when row

address 0 of bank 0 (0.00H-0.0FH) is specified as a general register:

(0.0FH) ← (0.0FH) – (0.2FH)

(0.0EH) ← (0.0EH) – (0.2EH) – CY

(0.0DH) ← (0.0DH) + (0.2DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

SUB MEM00F, MEM02F

SUBC MEM00E, MEM02E

SUBC MEM00D, MEM02D

154

CHAPTER 15 INSTRUCTION SET

Example 2

To subtract the 12-bit contents of addresses 0.40H through 0.42H from the 12-bit contents of addresses

0.0DH through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) – (0.40H)

(0.0EH) ← (0.0EH) – (0.41H) – CY

(0.0FH) ← (0.0FH) + (0.42H) – CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00D, MEM000 ; (0.0DH) ← (0.0DH) – (0.40H)

SUBC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) – (0.41H)

SUBC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) – (0.42H)

Example 3

To compare the 12-bit contents of addresses 0.00H through 0.03H with the 12-bit contents of addresses

0.0CH through 0.0FH and jump to LAB1, if both the 12-bit contents are the same. If not, jump to LAB2.

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM003 MEM 0.03H

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM000, MEM00C ; 0.00H-0.03H, because CMP flag is set

SUBC MEM001, MEM00D ; Address contents are not affected

SUBC MEM002, MEM00E ;

SUBC MEM003, MEM00F ;

SKF1 Z ; Z flag = 1, if result is the same.

BR LAB1 ; Z flag = 0, if result is not the same.

BR LAB2

:

LAB1 : :

:

LAB2 : :

:

155

CHAPTER 15 INSTRUCTION SET

(4) SUBC m, #n4 Subtract immediate data from data memory with carry flag

<1> OP code

10 8 7 4 3 0

10011 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) – n4 – CY

Subtracts specified immediate data from the contents of a specified data memory, including the carry

flag, and stores the result in the data memory address.

When CMP = 1 (m) – n4 – CY

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected by

the result.

If a borrow has occurred as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag is

reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the subtraction results in zero when the compare flag is reset (CMP = 0), the zero flag is set.

If the subtraction results in zero when the compare flag is set (CMP = 1), the zero flag is not changed.

You can perform subtraction in binary and 4-bit units or BCD, which can be selected by the BCD flag of

the PSWORD.

<3> Example 1

To subtract 5 from the 12-bit contents of addresses 0.0DH through 0.0FH and store the result in addresses

0.0DH through 0.0FH:

(0.0FH) ← (0.0FH) – 05H

(0.0EH) ← (0.0EH) – CY

(0.0DH) ← (0.0DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SUB MEM00F, #05H

SUBC MEM00E, #00H

SUBC MEM00D, #00H

156

CHAPTER 15 INSTRUCTION SET

Example 2

To subtract 5 from the 12-bit contents of addresses 0.4DH through 0.4FH and store the result in addresses

0.4DH through 0.4FH:

(0.4FH) ← (0.4FH) – 05H

(0.4EH) ← (0.4EH) – CY

(0.4DH) ← (0.4DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00F, #5 ; (0.4FH) ← (0.4FH) – 5

SUBC MEM00E, #0 ; (0.4EH) ← (0.4EH) – CY

SUBC MEM00D, #0 ; (0.4DH) ← (0.4DH) – CY

Example 3

To compare the 12-bit contents of addresses 0.00H through 0.03H with immediate data 0A3FH and jump

to LAB1 when both the 12-bit contents are the same. If not, jump to LAB2.

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM003 MEM 0.03H

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM000, #0H ; 0.00H-0.03H, because CMP flag is set

SUBC MEM001, #0AH ; Address contents are not affected

SUBC MEM002, #3H ;

SUBC MEM003, #0FH ;

SKF1 Z ; Z flag = 1, if result is the same.

BR LAB1 ; Z flag = 0, if result is not the same.

BR LAB2

:

LAB1: :

:

LAB2: :

:

:

157

CHAPTER 15 INSTRUCTION SET

15.5.3 Logical operation instructions

(1) OR r, m OR between general register and data memory

<1> OP code

10 8 7 4 3 0

00110 mR mC r

<2> Function

(r) ← (r) ∨ (m)

ORs the contents of a specified data memory address with the contents of a specified general register,

and stores the result in the general register.

<3> Example

To OR the contents of address 0.03H (1010B) with the contents of address 0.2FH (0111B) and store the

result (1111B) in address 0.03H.

(0.03H) ← (0.03H) ∨ (0.2FH)

1 0 1 0 Address 03H

OR

0 1 1 1 Address 2FH

↓
1 1 1 1 Address 03H

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0111B

OR MEM003, MEM02F

158

CHAPTER 15 INSTRUCTION SET

(2) OR m, #n4 OR between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10110 mR mC n4

<2> Function

(m) ← (m) ∨ n4

ORs the contents of a specified data memory address with specified immediate data and stores the result

in the data memory address.

<3> Example 1

To set bit 3 (MSB) of address 0.03H.

(0.03H) ← (0.03H) ∨ 1000B

Address 0.03H

1 × × × × : don't care

MEM003 MEM 0.03H

OR MEM003, #1000B

Example 2

To set all the bits of address 0.03H.

MEM003 MEM 0.03H

OR MEM003, #1111B

or

MEM003 MEM 0.03H

MOV MEM003, #0FH

159

CHAPTER 15 INSTRUCTION SET

(3) AND r, m AND between general register and data memory

<1> OP code

10 8 7 4 3 0

00100 mR mC r

<2> Function

(r) ← (r) ∧ (m)

ANDs the contents of a specified data memory address with the contents of a specified general register,

and stores the result in the general register.

<3> Example

To AND the contents of address 0.03H (1010B) with the contents of address 0.2FH (0110B) and store

the result (0010B) in address 0.03H.

(0.03H) ← (0.03H) ∧ (0.2FH)

1 0 1 0 Address 03H

AND

0 1 1 0 Address 2FH

↓
0 0 1 0 Address 03H

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0110B

AND MEM003, MEM02F

160

CHAPTER 15 INSTRUCTION SET

(4) AND m, #n4 AND between data memory and immediate data

<1> OP code

10 8 7 4 3 0

00000 mR mC n4

<2> Function

(m) ← (m) ∧ n4

ANDs the contents of a specified data memory address with specified immediate data, and stores the

result in the data memory address.

<3> Example 1

To reset bit 3 (MSB) of address 0.03H.

(0.03H) ← (0.03H) ∧ 0111B

Address 0.03H

0 × × × ×: don't care

MEM003 MEM 0.03H

AND MEM003, #0111B

Example 2

To reset all the bits of address 0.03H.

MEM003 MEM 0.03H

AND MEM003, #0000B

or,

MEM003 MEM 0.03H

MOV MEM003, #00H

161

CHAPTER 15 INSTRUCTION SET

(5) XOR r, m Exclusive OR between general register and data memory

<1> OP code

10 8 7 4 3 0

00101 mR mC r

<2> Function

(r) ← (r) ∨ (m)

Exclusive-ORs the contents of a specified data memory address with the contents of a specified general

register, and stores the result in the general register.

<3> Example 1

To compare the contents of address 0.03H with those of address 0.0FH, set and store in address 0.03H

bits not in agreement. If all the bits of address 0.03H are reset (i.e., if the address 0.03H contents are

the same as those of address 0.0FH), jump to LBL1; otherwise, to jump to LBL2.

This example compares the status of an alternate switch (address 0.03H contents) with the internal status

(address 0.0FH contents) and to branch to the processing of the switch that has affected.

1 0 1 0 Address 03H

XOR

0 1 1 0 Address 0FH

↓
1 1 0 0 Address 03H

↑ ↑
Bits that have affected

MEM003 MEM 0.03H

MEM00F MEM 0.0FH

XOR MEM003, MEM00F

SKNE MEM003, #00H

BR LBL1

BR LBL2

Example 2

To clear the address 0.03H contents

0 1 0 1 Address 03H

XOR

0 1 0 1 Address 03H

↓
0 0 0 0 Address 03H

MEM003 MEM 0.03H

XOR MEM003, MEM003

162

CHAPTER 15 INSTRUCTION SET

(6) XOR m, #n4 Exclusive OR between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10101 mR mC n4

<2> Function

(m) ← (m) ∨ n4

Exclusive-ORs the contents of a specified data memory address with specified immediate data, and stores

the result in the data memory address.

<3> Example

To invert bits 1 and 3 of address 0.03H and store the results in address 03H:

1 1 0 0 Address 03H

XOR

1 0 1 0

↓
0 1 1 0 Address 03H

↑ ↑
Inverted bits

MEM003 MEM 0.03H

XOR MEM003, #1010B

163

CHAPTER 15 INSTRUCTION SET

15.5.4 Test instructions

(1) SKT m, #n Skip next instruction if data memory bits are true

<1> OP code

10 8 7 4 3 0

11110 mR mC n

<2> Function

CMP ← 0, if (m) ∧ n = n, then skip

Skips the next one instruction if the result of ANDing the specified data memory contents with immediate

data n is equal to n (Excecutes as NOP instruction).

<3> Example 1

To jump to AAA if bit 0 of address 03H is ‘1’; if it is ‘0’, to jump to BBB.

SKT 03H, #0001B

BR BBB

BR AAA

Example 2

To skip the next instruction if both bits 0 and 1 of address 03H are ‘1’:

SKT 03H, #0011B

b3 b2 b1 b0

Skip condition 03H × × 1 1 ×: don’t care

Example 3

The results of executing of the following two instructions are the same:

SKT 13H, #1111B

SKE 13H, #0FH

164

CHAPTER 15 INSTRUCTION SET

(2) SKF m, #n Skip next instruction if data memory bits are false

<1> OP code

10 8 7 4 3 0

11111 mR mC n

<2> Function

CMP ← 0, if (m) ∧ n = 0, then skip

Skips the next one instruction if the result of ANDing the specified data memory contents with immediate

data n is 0 (Executes as NOP instruction).

<3> Example 1

To store immediate data 00H in data memory address 0FH if bit 2 of address 13H is 0; if it is 1, to jump

to ABC.

MEM013 MEM 0.13H

MEM00F MEM 0.0FH

SKF MEM013, #0100B

BR ABC

MOV MEM00F, #00H

Example 2

To skip the next instruction if both bits 3 and 0 of address 29H are ‘0’.

SKF 29H, #1001B

b3 b2 b1 b0

Skip condition 29H 0 × × 0 ×: don’t care

Example 3

The results of executing the following two instructions are the same:

SKF 34H, #1111B

SKE 34H, #00H

165

CHAPTER 15 INSTRUCTION SET

15.5.5 Compare instructions

(1) SKE m, #n4 Skip if data memory equal to immediate data

<1> OP code

10 8 7 4 3 0

01001 mR mC n4

<2> Function

(m) – n4, skip if zero

Skips the next one instruction if the contents of a specified data memory address are equal to the value

of the immediate data (Executes as NOP instruction).

<3> Example

To transfer 0FH to address 24H, if the address 24H contents are 0. If not, jump to OPE1.

MEM024 MEM 0.24H

SKE MEM024, #00H

BR OPE1

MOV MEM024, #0FH

OPE1 :

166

CHAPTER 15 INSTRUCTION SET

(2) SKNE m, #n4 Skip if data memory not equal to immediate data

<1> OP code

10 8 7 4 3 0

01011 mR mC n4

<2> Function

(m) – n4, skip if not zero

Skips the next one instruction if the contents of a specified data memory address are not equal to the value

of the immediate data (Executes as NOP instruction).

<3> Example

To jump to XYZ if the contents of address 1FH are 1 and if the address 1EH contents are 3; otherwise,

jump to ABC.

To compare 8-bit data, this instruction is used in the following combination.

3 1

IEH 0011 IFH 0001

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SKNE MEM01F, #01H

SKE MEM01E, #03H

BR ABC

BR XYZ

The same operation can be performed by using the compare and zero flags as follows:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM01F, #01H

SUBC MEM01E, #03H

SKT1 Z

BR ABC

BR XYZ

167

CHAPTER 15 INSTRUCTION SET

(3) SKGE m, #n4 Skip if data memory greater than or equal to immediate data

<1> OP code

10 8 7 4 3 0

11001 mR mC n4

<2> Function

(m) – n4, skip if not borrow

Skips the next one instruction if the contents of a specified data memory address are greater than the value

of the immediate data (Executes as NOP instruction).

<3> Example

To execute RET if the 8-bit data, stored in addresses 1FH (higher) and 2FH (lower) is greater than

immediate data 17H; otherwise, execute RETSK.

MEM01F MEM 0.1FH

MEM02F MEM 0.2FH

SKGE MEM01F, #1

RETSK

SKNE MEM01F, #1

SKLT MEM02F, #8 ; 7+1

RET

RETSK

(4) SKLT m, #n4 Skip if data memory less than immediate data

<1> OP code

10 8 7 4 3 0

11011 mR mC n4

<2> Function

(m) – n4, skip if borrow

Skips the next one instruction if the contents of a specified data memory address are less than the value

of the immediate data (Executes as NOP instruction).

<3> Example

To store 01H in address 0FH if the address 10H contents is greater than immediate data ‘6’; otherwise,

to store 02H in address 0FH.

MEM00F MEM 0.0FH

MEM010 MEM 0.10H

MOV MEM00F, #02H

SKLT MEM010, #06H

MOV MEM00F, #01H

168

CHAPTER 15 INSTRUCTION SET

15.5.6 Rotation instruction

(1) RORC r Rotate right general register with carry flag

<1> OP code

3 0

00111 000 0111 r

<2> Function

Rotates the contents of a general register specified by r 1 bit to the right with the carry flag.

<3> Example 1

To rotate the value of address 0.00H (1000B) 1 bit to the right when row address 0 (0.00H-0.0FH) of bank

0 is specified as a general register (RPH = 0, RPL = 0). As a result, the value of the address becomes

0100B.

(0.00H) ← (0.00H) ÷ 2

MEM000 MEM 0.00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; Carry flag ← 0

RORC MEM000

Example 2

To rotate the value 0FA52H of the data buffer (DBF) 1 bit to the right when row address 0 (0.00H-0.0FH)

of bank 0 is specified as a general register (RPH = 0, RPL = 0). As a result, the value of the data buffer

becomes 7D29H.

CY (r) b3 (r) b2 (r) b1 (r) b0

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; Carry flag ← 0

RORC MEM00C

RORC MEM00D

RORC MEM00E

RORC MEM00F

0 1 1 1 1

CY 0CH

1 0 1 0

0DH

0 1 0 1

0EH

0 0 1 0

0FH

0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1

CY

0

169

CHAPTER 15 INSTRUCTION SET

15.5.7 Transfer instructions

(1) LD r, m Load data memory to general register

<1> OP code

10 8 7 4 3 0

01000 mR mC r

<2> Function

(r) ← (m)

Loads the contents of a specified data memory address to a specified general register.

<3> Example 1

To load the address 0.2FH contents to address 0.03H.

(0.03H) ← (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

LD MEM003, MEM02F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

170

CHAPTER 15 INSTRUCTION SET

Example 2

To load the address 0.6FH contents to address 0.03H. At this time, if IXE = 1, IXH = 0, IXM = 4, and IXL

= 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified by specifying address 2FH.

IXH ← 00H

IXM ← 04H

IXL ← 00H

IXE flag ← 1

(0.03H) ← (0.6FH)

Address obtained by ORing index register contents 040H with data memory

contents 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

LD MEM003, MEM02F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

171

CHAPTER 15 INSTRUCTION SET

(2) ST m, r Store general register to data memory

<1> OP code

10 8 7 4 3 0

11000 mR mC r

<2> Function

(m) ← (r)

Stores the contents of a specified general register to a specified data memory address.

<3> Example 1

To store the contents of address 0.03H in address 0.2FH.

(0.2FH) ← (0.03H)

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ST 2FH, 03H ; Transfers general register contents to data memory

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

172

CHAPTER 15 INSTRUCTION SET

Example 2

To store the contents of 0.00H in addresses 0.18H through 0.1FH. Data memory (18H to 1FH) is

addressed by the index register.

(0.18H) ← (0.00H)

(0.19H) ← (0.00H)

:

:

:

:

(0.1FH) ← (0.00H)

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H

MOV IXL, #00H ; Specifies address 0.00H in data memory.

MEM018 MEM 0.18H

MEM000 MEM 0.00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ST MEM018, MEM000 ; (0.1 x H) ← (0.00H)

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKGE IXL, #08H

BR LOOP1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

173

CHAPTER 15 INSTRUCTION SET

(3) MOV @r, m Move data memory to destination indirect

<1> OP code

10 8 7 4 3 0

01010 mR mC r

<2> unction

When MPE = 1

(MP,(r)) ← (m)

When MPE = 0

(BANK, mR, (r)) ← (m)

Stores the contents of a specified data memory address to the data memory addressed by the contents

of a specified general register.

When MPE = 0, transfer is executed in the same row address of the same bank.

<3> Example 1

To store the contents of address 0.20H in address 0.2FH with the MPE flag cleared to 0. The destination

data memory source address is the same row address as that of the transfer source, and the contents

of the general register at address 0.00H are the column address.

(0.2FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag 0

MOV MEM000,#0FH ; Sets column address in general register

MOV @MEM000, MEM020 ; Stores

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

174

CHAPTER 15 INSTRUCTION SET

Example 2

To store the contents of address 0.20H in address 0.3FH with the MPE flag set to 1. The row address

of the data memory at the transfer destination is specified is the contents of memory pointer MP, and the

column address is the contents of the general register at address 0.00H.

(0.3FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV 00H, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SETI MPE ; MPE flag ← 1

MOV @MEM000, MEM020 ; Stores

(4) MOV m, @r Move data memory to destination indirect

<1> OP code

10 8 7 4 3 0

11010 mR mC r

<2> Function

When MPE = 1

(m) ← (MP,(r))

When MPE = 0

(m) ← (BANK,mR, (r))

Stores the contents of the data memory addressed by the contents of a specified general register to

another data memory address.

When MPE = 0, transfer is executed in the same row address of the same bank.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

175

CHAPTER 15 INSTRUCTION SET

<3> Example 1

To store the contents of address 0.2FH in address 0.20H with the MPE flag cleared to 0. The data memory

at the transfer source is at the same row address as the destination, and the column address is the contents

of the general register at address 0.00H.

(0.20H) ← (0.2FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0

MOV MEM000, #0FH ; Sets column address in general register

MOV MEM020, @MEM000 ; Stores

Example 2

To store the contents of address 0.3FH in address 0.20H with the MPE flag set to 1. The row address

of the data memory at the transfer source is the contents of the memory pointer, and the column address

is the contents of the general register at address 0.00.

(0.20H) ← (0.3FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV MEM000, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SETI MPE ; MPE flag ← 1

MOV MEM020, @MEM000 ; Stores

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

176

CHAPTER 15 INSTRUCTION SET

(5) MOV m, #n4 Move immediate data to data memory

<1> OP code

10 8 7 4 3 0

11001 mR mC n4

<2> Function

(m) ← n4

Stores immediate data in a specified data memory address.

<3> Example 1

To store immediate data 0AH in data memory address 0.50H.

(0.50H) ← 0AH

MEM050 MEM 0.50H

MOV MEM050, #0AH

Example 2

To store immediate data 07H in address 0.32H when data memory address 0.00H is specified and if IXH

= 0, IXM = 3, IXL = 2, and IXE flag = 1.

(0.32H) ← 07H

MEM000 MEM 0.00H

MOV IXH, #00H ; IX ← 00000110010B (0.32H)

MOV IXM, #03H

MOV IXL, #02H

SET1 IXE ; IXE flag ← 1

MOV MEM000, #07H

(6) MOVT DBF, @AR Move program memory data specified by AR to DBF

<1> OP code

10 8 7 4 3 0

00111 000 0001 0000

<2> Function

SP ← SP – 1, ASR ← PC, PC ← AR,

DBF ← (PC), PC ← ASR, SP ← SP + 1

Stores the program memory contents, addressed by address register AR, in data buffer DBF.

Because this instruction temporarily uses one level of stack, pay attention to the nesting of subroutines

and interrupts.

177

CHAPTER 15 INSTRUCTION SET

<3> Example

To transfer 16 bits of table data to data buffers (DBF3, DBF2, DBF1, and DBF0) according to the values

of the address registers (AR3, AR2, AR1, and AR0) in the system register.

; *

; ** Table data

; *

Address ORG 0010H

0010H DW 0000000000000000B ; (0000H)

0011H DW 1010101111001101B ; (0ABCDH)

:

:

; *

; ** Table reference program

; *

MOV AR3, #00H ; AR3 ← 00H Sets 0011H in address register

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV AR0, #01H ; AR0 ← 01H

MOVT DBF, @AR ; Transfers data of address 0011H to DBF

In this case, the data is stored in DBF as follows:

DBF3 = 0AH

DBF2 = 0BH

DBF1 = 0CH

DBF0 = 0DH

178

CHAPTER 15 INSTRUCTION SET

(7) PUSH AR Push address register

<1> OP code

10 8 7 4 3 0

00111 000 1101 0000

<2> Function

SP ← SP–1,

ASR ← AR

Decrements the stack pointer SP and stores the value of the address register AR in the address stack

register specified by the stack pointer.

<3> Example 1

To set 003FH in the address register and store it in stack.

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #0FH

PUSH AR

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

F300

S T A C

0 0 3 F

K

179

CHAPTER 15 INSTRUCTION SET

Example 2

To set the return address of a subroutine in the address register and return if there is a data table following

the CALL instruction.

ORG 10H

CALL SUB1

; *

; * * DATA TABLE

; *

DW 1A1FH

DW 002FH

DW 010AH

DW 0555H

DW 0FFFH

ORG 30H

Contents "0011H" (address next to
that of CALL instruction) are loaded
to address register if POP instruction
is executed at this point.

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #00H

PUSH AR

RET

POP AR

SUB1 :

···········

···········

···········

········

180

CHAPTER 15 INSTRUCTION SET

(8) POP AR Pop address register

<1> OP code

00111 000 1100 0000

<2> Function

AR ← ASR

SP ← SP+1

Loads the contents of the address stack register specified by the stack pointer to address register AR,

and then increments the value of stack pointer SP.

<3> Example

If the PSW contents have been changed in an interrupt processing routine when interrupt processing is

performed and you want to transfer the PSW contents to the address register through WR, you should

save them at the beginning of the interrupt processing, to the address stack register by the PUSH

instruction. Then, restore them to the address register by the POP instruction before return, and transfer

them to PSW through WR.

PEEK WR, PSW

POKE AR0, WR

PUSH AR

Interrupt processing routine

POP AR

PEEK WR, AR0

POKE PSW, WR

RET (or RETI)

EI

Interrupt source generation

············

············
············

·························

181

CHAPTER 15 INSTRUCTION SET

(9) PEEK WR, rf Peek register file to window register

<1> OP code

00111 rfR 0011 rfC

<2> Function

WR ← (rf)

Stores the register file contents to window register WR.

<3> Example

To store the stack pointer contents (SP) at address 01H in the register file to the window register.

PEEK WR, SP

SP

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

WR

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3R
ow

 a
dd

re
ss

Column address

Register file

182

CHAPTER 15 INSTRUCTION SET

(10) POKE rf, WR Poke window register to register file

<1> OP code

10 8 7 4 3 0

00111 rfR 0010 rfC

<2> Function

(rf) ← WR

Stores the window register WR contents to the register file.

<3> Example

To store immediate data 0FH in P0DBIO of the register file through the window register.

MOV WR, #0FH

POKE P0DBIO, WR ; Sets all P0D0, P0D1, P0D2, and P0D3 in output mode

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

WR

0 1 2 4 5 6 7 8 9 A B C D E F

0

1

2

3R
ow

 a
dd

re
ss

Column address

Register file P0DBIO

3

183

CHAPTER 15 INSTRUCTION SET

<4> Precaution

Addresses 40H through 7FH in the register file appear in data memory in a program. Consequently, the

PEEK and POKE instructions can access addresses 40H through 7FH of each bank of the data memory

in addition to the register file. For example, these instructions can also be used as follows:

MEM05F MEM 0.5FH

PEEK WR, PSW ; Stores PSW (7FH) contents in system register to WR

POKE MEM05F, WR ; Stores WR contents to data memory at address 5FH

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

WR

PEEK WR, PSW

PSW

POKE 5FH, WR

Register
file

Data
memory

184

CHAPTER 15 INSTRUCTION SET

(11) GET DBF, p Get peripheral data to data buffer

<1> OP code

10 8 7 4 3 0

00000 PH 1011 PL

<2> Function

DBF ← (p)

Stores the peripheral circuit contents to data buffer DBF.

DBF is a 16-bit area of addresses 0CH through 0FH of BANK0 of the data memory regardless of the value

of the bank register.

<3> Example 1

To store the 8-bit contents of the shift register SIOSFR of the serial interface in data buffers DBF0 and

DBF1.

GET DBF, SIOSFR

<4> Precaution

The data buffer is 16 bits wide. The number of bits differs depending on the peripheral hardware to be

accessed. For example, when the GET instruction is executed to a peripheral hardware register whose

valid bit length is 8 bits, data is stored in the low-order 8 bits of data buffer DBF (DBF1, DBF0).

21

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

DBF

R
ow

 a
dd

re
ss

12H

Peripheral
hardware register

SIOSFR

DBF0

b0

DBF1

b7

DBF2

Retained

DBF3

Valid bits

b0b7

Retained

GET

Data of peripheral
hardware register

Data buffer

185

CHAPTER 15 INSTRUCTION SET

(12) PUT p, DBF Put data buffer to peripheral

<1> OP code

10 8 7 4 3 0

00111 PM 1010 PL

<2> Function

(p) ← DBF

Stores the data buffer DBF contents in the peripheral register.

DBF is a 16-bit area of addresses 0CH through 0FH of BANK0 of the data memory regardless of the value

of the bank register.

<3> Example 1

To set 0AH and 05H in data buffers DBF1 and DBF0, respectively, and transfer them to the shift register

(SIOSFR) for serial interface.

MOV BANK, #00H ; Data memory bank 0

MOV DBF0, #05H

MOV DBF1, #0AH

PUT SIOSFR, DBF

<4> Precaution

The data buffer is 16 bits wide. The number of bits differs depending on the peripheral hardware to be

accessed. For example, when the PUT instruction is executed to the peripheral hardware register whose

valid bit length is 8-bit, the low-order 8 bits data of data buffer DBF (DBF1, DBF0) is transferred to a

peripheral hardware register (DBF3 and DBF2 data is not transferred).

DBF0

b3 b2 b1 b0

DBF1

b7 b6 b5 b4

DBF2

Don't care

DBF3

Valid bits

b0b7

Don't care

PUT

Data of peripheral
hardware

Data buffer

5A

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

DBF

R
ow

 a
dd

re
ss

0A5H

Peripheral
circuit

SIOSFR

186

CHAPTER 15 INSTRUCTION SET

15.5.8 Branch instructions

(1) BR addr Branch to the address

<1> OP code

10 0

011××Note addr

Note Refer to <4> Precaution

<2> Function

PC10–0 ← addr

Branches to an address specified by addr.

<3> Example

FLY LAB 0FH ; Defines FLY = 0FH

:

:

BR FLY ; Jumps to address 0F

:

:

BR LOOP1 ; Jumps to LOOP1

:

:

BR $ + 2 ; Jumps to address two addresses lower than the current address

:

BR $ – 3 ; Jumps to address three addresses higher than the current address

:

:

LOOP1:

<4> Precation

The BR instruction does not use the division of “page”, and the instruction can be written in the ROM

addresses 0000H-1FFFH. However, the BR instruction branching within page 0 (addresses 0000H-

07FFH) and the BR instruction branching in page 1 (07FFH-0FFFH), and the BR instruction branching

in page 2 (1000H-17FFH) and the BR instruction branching in page 3 (17FFH-1FFFH) differ in OP code.

The OP codes are 0C in page 0, 0D in page 1, 0E in page 2, and 0F in page 3.

If these instructions are assembled with the 17K-series assembler, the jump destination is automatically

referenced.

187

CHAPTER 15 INSTRUCTION SET

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 : 07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 :

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 :

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 :

If OP code is 0C If OP code is 0D

(if jump destination address is in page 0) (if jump destination address is in page 1)

If OP code is 0E If OP code is 0F

(if jump destination address is in page 2) (if jump destination address is in page 3)

188

CHAPTER 15 INSTRUCTION SET

To perform patch correction during debugging, it is necessary for the programmer to convert 0C, 0D, 0E,

and 0F.

Address conversion is also necessary when the jump destination of the BR instructions are in addresses

0000H-07FFH, 0800H-0FFFH, 1000H-17FFH, and 1800H-1FFFH. In other words, addresses 0000H,

0800H, 1000H, and 1800H are treated as address 000H, starting from which the subsequent addresses

are incremented by 1.

Caution The number of pages of each model in the µPD172×× subseries differs. For details, refer

to the Data Sheet of your device.

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

ADD1 :

0C500

ADD2 :

ADD3 :

ADD4 :

BR ADD2 0D501

BR ADD3 0E60A

BR ADD4 0F6FF

BR ADD1 0C500

BR ADD3 0E60A

0500H

0D01H

160AH

1EFFH

Machine code (1-4-3-4-4 format)

189

CHAPTER 15 INSTRUCTION SET

(2) BR @AR Branch to the address specified by address register

<1> OP code

00111 000 0100 0000

<2> Function

PC ← AR

Branches to a program address specified by address register AR.

<3> Example 1

To set 003FH in the address registers AR (AR0-AR3) and jump to address 003FH by the BR @AR

instruction.

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #03H ; AR1 ← 03H

MOV AR0, #0FH ; AR0 ← 0FH

BR @AR ; Jumps to address 003FH

Example 2

To change the branch destination as follows according to the contents of data memory address 0.10H.

0.10H contents Branch destination label

00H → AAA

01H → BBB

02H → CCC

03H → DDD

04H → EEE

05H → FFF

06H → GGG

07H → HHH

08H-0FH → ZZZ

;*

;** Jump table

;*

ORG 10H

BR AAA

BR BBB

BR CCC

BR DDD

BR EEE

BR FFF

BR GGG

BR HHH

BR ZZZ

190

CHAPTER 15 INSTRUCTION SET

:

:

:

MEM010 MEM 0.10H

MOV AR3, #00H ; AR3 ← 00H 001 x H in AR

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV RPH, #00H ; General register bank 0

MOV RPL, #02H ; General register row address 1

ST AR0, MEM010 ; AR0 ← 0.10H

SKLT AR0, #08H

MOV AR0, #08H ; Sets 08H in AR0 if AR0 contents are greater than 08H

BR @AR

<4> Precaution

The number of bits of the address registers (AR3, AR2, AR1, and AR0) differs depending on the model.

Refer to the Data Sheet of your device.

191

CHAPTER 15 INSTRUCTION SET

CALL SUB1

SUB1 :

MAIN

CALL SUB1

SUB1 :

MAIN

RET

SUB2 :

RET

SUB3 : ·················

RET

Example 2

············

RET

······
CALL SUB3

······

······
CALL SUB2

······

·······

·······

·······

·······

15.5.9 Subroutine instructions

(1) CALL addr Call subroutine

<1> OP code

10 0

11100 addr

<2> Function

SP ← SP – 1, ASR ← PC,

PC10–0 ← addr, PAGE ← 0

Increments the value of the program counter (PC), saves it in the stack, and branches to the subroutine

whose address is specified by addr.

<3> Example 1

Example 2

192

CHAPTER 15 INSTRUCTION SET

(2) CALL @AR Call subroutine specified by address register

<1> OP code

00111 000 0101 0000

<2> Function

SP ← SP – 1,

ASR ← PC,

PC ← AR

Increments the value of the program counter (PC), saves it in the stack, and branches to the subroutine

that starts from the address specified by the address register (AR).

<3> Example 1

To set 0020H in address register AR (AR0-AR3) and call the subroutine at address 0020H by the CALL

@AR instruction.

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #02H ; AR1 ← 02H

MOV AR0, #00H ; AR0 ← 00H

CALL @AR ; Calls subroutine at address 0020H

Example 2

To call the following subroutine by the data memory address 0.10H contents:

0.10H contents Subroutine name

00H → SUB1

01H → SUB2

02H → SUB3

03H → SUB4

04H → SUB5

05H → SUB6

06H → SUB7

07H → SUB8

08H-0FH → SUB9

193

CHAPTER 15 INSTRUCTION SET

<4> Precaution

The number of bits of the address registers (AR3, AR2, AR1, and AR0) that can be used differs depending

on the model of the device. For details, refer to the manual of your device.

SUB9 :SUB8 :SUB7 :SUB6 :SUB5 :SUB4 :

SUB3 :SUB2 :SUB1 :

Execution returns here if RET
instruction is executed in
each subroutine

; *

: * * Jump table for subroutine

; *

ORG 10H

BR SUB1

BR SUB2

BR SUB3

BR SUB4

BR SUB5

BR SUB6

BR SUB7

BR SUB8

BR SUB9

MOV AR3, #00H ; AR3←00H 001xH to address register

MOV AR2, #00H ; AR2←00H

MOV AR1, #01H ; AR1←01H

MOV RPH, #00H ; Bank 0 of general register

MOV RPL, #02H ; Row address 1 of general register

ST AR0, 10H ; AR0←0.10H

SKLT AR0, #08H ; Makes AR0 contents 08 if AR0 contents

MOV AR0, #08H; are greater than 08H

CALL @AR To jump table

···················

RET

···················

RET

···················

RET

···················

RET

···················

RET

···················

RET

·······

·······

···················

RET

···················

RET

···················

RET

·······

·······

194

CHAPTER 15 INSTRUCTION SET

(3) RET Return to the main program from subroutine

<1> OP code

10 8 7 4 3 0

00111 000 1110 0000

<2> Function

PC ← ASR,

SP ← SP + 1

Returns execution from a subroutine to the main program.

Restores the return address, saved by the CALL instruction to the stack, to the program counter.

<3> Example

(4) RETSK Return to the main program then skip next instruction

<1> OP code

00111 001 1110 0000

<2> Function

PC ← ASR, SP ← SP + 1 and skip

Returns execution from a subroutine to the main program.

Skips the instruction next to the CALL instruction (Executes as NOP instruction).

Restores the return address, saved by the CALL instruction to the stack, to the program counter PC, and

then increments the program counter contents.

CALL SUB1

SUB1 ; ·················

RET

··············

··············

195

CHAPTER 15 INSTRUCTION SET

<3> Example

To execute the RET instruction and return the execution to the instruction next to the CALL instruction

if the LSB (least significant bit) at address 25H of the data memory (RAM) is 0; if the LSB is 1, to execute

the RETSK instruction to return the execution to the instruction after the next to the CALL instruction (ADD

03H, 16H in this example).

(5) RETI Return to the main program from interrupt service routine

<1> OP code

00111 100 1110 0000

<2> Function

PC ← ASR, INTR ← INTSK, SP ← SP + 1

Returns execution from an interrupt processing program to the main program.

Restores to the program counter the return address which was saved in the stack by a vectored interrupt.

A part of the system registers is also restored to the states before the occurrence of the vectored interrupt.

<3> Precaution 1

The contents of the system register are automatically saved by an interrupt (which can be restored by the

RETI instruction) are the PSWORD.

Precaution 2

If the RETI instruction is used in the place of the RET instruction to return from an ordinary subroutine,

the bank contents (which were saved when the interrupt has occurred) may be replaced with the contents

of the interrupt stack. Consequently, probably the bank contents are unknown to the user. To avoid this,

be sure to use the RET (or RETSK) instruction to return from a subroutine.

·············

·············

CALL SUB1

BR LOOP

ADD 03H, 16H SKF 25H, #0001B

RETSK ;LSB of 25H is "1"

RET ;LSB of 25H is "0"

SUB1

·················

196

CHAPTER 15 INSTRUCTION SET

15.5.10 Interrupt instructions

(1) EI Enable Interrupt

<1> OP code

00111 000 1111 0000

<2> Function

INTEF ← 1

Enables the vectored interrupt.

The interrupt is enabled after the instruction next to the EI instruction has been executed.

<3> Example 1

As shown in the following example, the interrupt request is accepted after the next instruction (except the

instruction that manipulates the program counter) has been executed, and then the execution flow shifts

to a vector addressNote1.

Notes 1. The vector address differs depending on the interrupt accepted.

2. The interrupt accepted (an interrupt request occurs after the execution of the EI instruction and

the execution flow shifts to an interrupt service routine) is the interrupt whose interrupt enable

flag (IP×××) is set. The flow of the program is not changed (i.e., the interrupt is not accepted)

even if an interrupt request occurs after the EI instruction has been executed with the interrupt

enable flag of each interrupt not set. However, the interrupt request flag (IRQ×××) is set. The

interrupt is therefore accepted at the point where the interrupt enable flag is set.

········

MOV 0AH #00H

ADD 0BH, #01H

ADD 0CH, #01H

EI
·········

············
DI

········

Note 2
Interrupt service
routine (vector address)

MOV 0AH, #01H

SUB 0BH, #01H
·······

EI

Interrupt request occurs →

Interrupt request occurs →

EI
RET

·············

197

CHAPTER 15 INSTRUCTION SET

Example 2

An example of an interrupt that is caused by an interrupt request that has been accepted while an

instruction that manipulates the program counter is executed as follows.

(2) DI Disable interrupt

<1> OP code

00111 001 1111 0000

<2> Function

INTEF ← 0

Disables the vectored interrupt.

<3> Example

Refer to Example 1 in (1) EI.

Interrupt request occurs →

········

MOV 0AH, #00H

ADD 0BH, #01H

EI
·········

············

Interrupt service
routine (vector address)

EI
RET

·············

BR
·········

ABC

ABC :

198

CHAPTER 15 INSTRUCTION SET

15.5.11 Other instructions

(1) STOP s Stop CPU and release by condition s

<1> OP code

3 0

00111 010 1111 s

<2> Function

Stops the system clock and sets the device in the STOP mode.

By setting the device in the STOP mode, the current consumption of the device can be minimized.

The condition, under which the STOP mode is released, is specified by the operand (s).

For the condition, under which the STOP mode is released, refer to 12.2 Setting and Releasing STOP

Mode .

(2) HALT h Halt CPU and release by condition h

<1> OP code

3 0

00111 011 1111 h

<2> Function

Sets the device in the HALT mode.

By setting the device in the HALT mode, the current consumption of the device can be reduced.

The condition, under which the HALT mode is released, is specified by the operand (h).

For the condition, under which the HALT mode is released, refer to 12.3 Setting and Releasing HALT

Mode .

(3) NOP No operation

<1> OP code

00111 100 1111 0000

<2> Function

Executes nothing but consumes one machine cycle.

199

CHAPTER 15 INSTRUCTION SET

[MEMO]

200

APPENDIX A DEVELOPMENT TOOLS

APPENDIX A DEVELOPMENT TOOLS

A.1 Hardware List

Target Device
In-circuit Emulator SE Board Emulation Probe

Part Number Package

µPD17201AGF 80-pin QFP IE-17K SE-17207 EP-17201GF EV-9200G-80

µPD17203AGC 52-pin QFP IE-17K-ET SE-17204 EP-17203GC EV-9200G-52

µPD17204GC 52-pin QFP EMU-17KNote 2

µPD17207GF 80-pin QFP SE-17207 EP-17201GF EV-9200G-80

µPD17225CT 28-pin SDIP SE-17225 EP-17K28CT EV-9500GT-28

µPD17225GT 28-pin SOP EP-17K28GT (for EP-17K28GT)

µPD17226CT

µPD17226GT

µPD17227CT

µPD17227GT

µPD17228CT

µPD17228GT

Notes 1. EV-9200××−×× is a conversion socket, and EV-9500××−×× is a flexible board.

2. Manufactured by Naito Densei Machida Mfg. Co., Ltd. Host machine is compatible with PC-9800 series

only. For details, contact Naito Densei (TEL 044-822-3813).

Conversion Socket/

AdapterNote 1

201

APPENDIX A DEVELOPMENT TOOLS

A.2 Software List

• PC-9800 series (Japanese Windows TM)

Device Assembler C Compiler Device File SIMPLEHOST

17201A µSAA13RA17K µSAA13CC17K µSAA13AS17201 µSAA13ID17K

17203A µSAA13AS17203

17204 µSAA13AS17204

17207 µSAA13AS17207

17225 µSAA13AS17225

17226

17227

17228

• IBM PC/AT TM (Japanese Windows TM)

Device Assembler C Compiler Device File SIMPLEHOST

17201A µSAB13RA17K µSAB13CC17K µSAB13AS17201 µSAB13ID17K

17203A µSAB13AS17203

17204 µSAB13AS17204

17207 µSAB13AS17207

17225 µSAB13AS17225

17226

17227

17228

• IBM PC/AT (English Windows TM)

Device Assembler C Compiler Device File SIMPLEHOST

17201A µSBB13RA17K µSBB13CC17K µSBB13AS17201 µSBB13ID17K

17203A µSBB13AS17203

17204 µSBB13AS17204

17207 µSBB13AS17207

17225 µSBB13AS17225

17226

17227

17228

202

APPENDIX A DEVELOPMENT TOOLS

A.3 PROM Programmers

Target PROM Program adapter PROM Programmer

µPD17P203AGC AF-9808B AF-9703

µPD17P204GC AF-9704

µPD17P207GF AF-9808A AF-9705

µPD17P218CT AF-9808J AF-9706

µPD17P218GT AF-9808H

Remark The PROM programmer and program adapter for the 17K series are produced by Ando Electric Co.

203

APPENDIX A DEVELOPMENT TOOLS

[MEMO]

204

APPENDIX B HOW TO ORDER THE MASK ROM

APPENDIX B HOW TO ORDER THE MASK ROM

After you have developed your program, place your order for a mask ROM as follows:

(1) Reservation for ordering mask ROM

Inform NEC in advance when you need the mask ROM; otherwise, the mask ROM may not be delivered in

time to meet your needs.

(2) Creating ordering medium

The medium in which the mask ROM is ordered is a UV-EPROM.

First, create a hex file (with extension characters .PRO) for ordering the mask ROM by adding assemble option

/PROM of the assembler (RA17K).

Next, write the hex file for ordering the mask ROM in the UV-EPROM.

When ordering with a UV-EPROM, create three UV-EPROM, all having identical contents.

Caution You cannot order a mask ROM by creating a hex file with .ICE.

(3) Creating necessary documents

Fill out the following forms, when ordering for the mask ROM:

• Mask ROM ordering sheet

• Mask ROM ordering check sheet

(4) Ordering

Submit the medium created in (2) and documents created in (3) to NEC by the deadline date for ordering.

Remark For details, refer to ROM Code Ordering Procedure (IEM-1366) .

205

APPENDIX B HOW TO ORDER THE MASK ROM

[MEMO]

206

APPENDIX C INSTRUCTION INDEX

APPENDIX C INSTRUCTION INDEX

C.1 Instruction Index (by function)

[Addition]

ADD r, m ... 138

ADD m, #n4 ... 141

ADDC r, m ... 143

ADDC m, #n4 ... 146

INC AR ... 147

INC IX .. 149

[Subtraction]

SUB r, m ... 150

SUB m, #n4 ... 152

SUBC r, m ... 154

SUBC m, #n4 ... 156

[Logical]

OR r, m ... 158

OR m, #n4 ... 159

AND r, m ... 160

AND m, #n4 ... 161

XOR r, m ... 162

XOR m, #n4 ... 163

[Test]

SKT m, #n ... 164

SKF m, #n ... 165

[Compare]

SKE m, #n ... 166

SKNE m, #n ... 167

SKGE m, #n ... 168

SKLT m, #n ... 168

[Rotate]

RORC r ... 169

[Transfer]

LD r, m ... 170

ST m, r .. 172

MOV @r, m .. 174

MOV m, @r ... 175

MOV m, #n4 ... 177

MOVT DBF, @AR .. 177

PUSH AR ... 179

POP AR ... 181

PEEK WR, rf ... 182

POKE rf, WR ... 183

GET DBF, p .. 185

PUT p, DBF .. 186

[Branch]

BR addr ... 187

BR @AR ... 190

[Subroutine]

CALL addr ... 192

CALL @AR ... 193

RET ... 195

RETSK .. 195

RETI .. 196

[Interrupt]

EI ... 197

DI ... 198

[Others]

STOP s .. 199

HALT h .. 199

NOP .. 199

207

APPENDIX C INSTRUCTION INDEX

C.2 Instruction Index (by alphabetic order)

[A]

ADD m, #n4 ... 141

ADD r, m ... 138

ADDC m, #n4 ... 146

ADDC r, m ... 143

AND m, #n4 ... 161

AND r, m ... 160

[B]

BR addr ... 187

BR @AR ... 190

[C]

CALL addr ... 192

CALL @AR ... 193

[D]

DI .. 198

[E]

EI .. 197

[G]

GET DBF, p .. 185

[H]

HALT h .. 199

[I]

INC AR ... 147

INC IX .. 149

[L]

LD r, m ... 170

[M]

MOV m, #n4 ... 177

MOV m, @r .. 175

MOV @r, m .. 174

MOVT DBF, @AR .. 177

[N]

NOP .. 199

[O]

OR m, #n4 ... 159

OR r, m ... 158

[P]

PEEK WR, rf ... 182

POKE rf, WR ... 183

POP AR ... 181

PUSH AR ... 179

PUT p, DBF .. 186

[R]

RET .. 195

RETI .. 196

RETSK .. 195

RORC r .. 169

[S]

SKE m, #n ... 166

SKF m, #n ... 165

SKGE m, #n4 ... 168

SKLT m, #n4 ... 168

SKNE m, #n4 ... 167

SKT m, #n ... 164

ST m, r ... 172

STOP s .. 199

SUB m, #n4 ... 152

SUB r, m ... 150

SUBC m, #n4 ... 156

SUBC r, m ... 154

[X]

XOR m, #n4 ... 162

XOR r, m ... 163

208

APPENDIX D REVISION HISTORY

APPENDIX D REVISION HISTORY

A history of the revisions up to this edition is shown below. “Applied to:” indicates the chapters to which the revision

was applied.

Edition Major Revisions from the Previous Version Applied to:

2nd µPD17211, 17215, 17216, and 17P218 added Throughout

3rd µPD17217 and 17218 added Throughout

µPD17211 deleted

µPD17P218 under development → developed

9.2.3 Table reference CHAPTER 9 DATA BUFFER (DBF)

Caution added to the table reference instruction

Caution added to CHAPTER 11 INTERRUPT FUNCTION CHAPTER 11 INTERRUPT FUNCTION

14.3 How to Write Program Memory and 14.4 How to Read CHAPTER 14 WRITING AND VERIFYING

Program Memory modified ONE-TIME PROM

4th µPD17225, 17226, 17227, and 17228 added Throughout

µPD17202A, 17215, 17216, 17217, 17218 and 17P202A deleted Throughout

Assembler changed (AS17K → RA17K) Throughout

Changes in 1.1 List of Functions CHAPTER 1 GENERAL

Extension instruction added to the table in 15.4 Assembler CHAPTER 15 INSTRUCTION SET

(RA17K) Macro instruction

A.1 Hardware List modified APPENDIX A DEVELOPMENT TOOLS

A.2 Software List modified APPENDIX A DEVELOPMENT TOOLS

209

APPENDIX D REVISION HISTORY

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 98.2

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	CHAPTER 1 GENERAL
	1.1 List of Functions

	CHAPTER 2 PROGRAM COUNTER (PC)
	2.1 Program Counter Configuration
	2.2 Program Counter Operations

	CHAPTER 3 PROGRAM MEMORY (ROM)
	3.1 Program Memory Configuration
	3.2 Program Memory Function

	CHAPTER 4 DATA MEMORY (RAM)
	4.1 Data Memory Configuration

	CHAPTER 5 STACK
	5.1 Configuration of Stack
	5.2 Function of Stack
	5.3 Address Stack Registers
	5.4 Interrupt Stack Register
	5.5 Stack Pointer (SP) and Interrupt Stack Register
	5.6 Stack Operation
	5.7 Nesting Level of Stack, and PUSH and POP Instructions

	CHAPTER 6 SYSTEM REGISTERS (SYSREG)
	6.1 Configuration of System Registers
	6.2 Address Register (AR)
	6.3 Window Register (WR)
	6.4 Bank Register (BANK)
	6.5 Index Register (IX)
	6.6 General Register Pointer (RP)
	6.7 Program Status Word (PSWORD)
	6.8 Notes on Using System Registers

	CHAPTER 7 GENERAL REGISTERS (GR)
	7.1 General Register Configuration
	7.2 General Register Function

	CHAPTER 8 REGISTER FILE (RF)
	8.1 Register File Configuration
	8.2 Register File Function
	8.3 Control Registers
	8.4 Notes on Using Register File

	CHAPTER 9 DATA BUFFER (DBF)
	9.1 Data Buffer Configuration
	9.2 Data Buffer Function

	CHAPTER 10 ARITHMETIC LOGIC UNIT (ALU)
	10.1 ALU Block Configuration
	10.2 ALU Block Function
	10.3 Arithmetic Operation
	10.4 Logical Operation
	10.5 Bit Testing
	10.6 Compare
	10.7 Rotation Processing

	CHAPTER 11 INTERRUPT FUNCTION
	11.1 Interrupt Control Circuit Configuration
	11.2 Interrupt Sequence

	CHAPTER 12 STANDBY FUNCTION
	12.1 Function Outline
	12.2 Setting and Releasing STOP Mode
	12.3 Setting and Releasing HALT Mode

	CHAPTER 13 RESET FUNCTION
	13.1 Reset by RESET Pin
	13.2 Watchdog Function (WDOUT output)
	13.3 Low Voltage Detection Circuit
	13.4 Notes on Using INT and RESET Pins

	CHAPTER 14 WRITING AND VERIFYING
	14.1 Differences between Mask ROM and One- Time PROM Models
	14.2 Operation Modes for Writing/ Verifying Program Memory
	14.3 How to Write Program Memory
	14.4 How to Read Program Memory

	CHAPTER 15 INSTRUCTION SET
	15.1 Instruction Set Outline
	15.2 Legend
	15.3 Instruction List
	15.4 Assembler (RA17K) Macro instructions
	15.5 Instruction Functions

	APPENDIX A DEVELOPMENT TOOLS
	A. 1 Hardware List
	A. 2 Software List
	A. 3 PROM Programmers

	APPENDIX B HOW TO ORDER THE MASK ROM
	APPENDIX C INSTRUCTION INDEX
	C. 1 Instruction Index (by function)
	C. 2 Instruction Index (by alphabetic order)

	APPENDIX D REVISION HISTORY

