FEATURES
Ultralow Bias Current
60 fA Max (AD549L)
250 fA Max (AD549J)
Input Bias Current Guaranteed over Common-Mode Voltage Range
Low Offset Voltage
0.25 mV Max (AD549K)
1.00 mV Max (AD549J)

Low Offset Drift $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \operatorname{Max}$ (AD549K)
$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \operatorname{Max}(\mathrm{AD} 549 \mathrm{~J})$
Low Power
700 mA Max Supply Current
Low Input Voltage Noise 4 mV p-p 0.1 Hz to 10 Hz
MIL-STD-883B Parts Available

APPLICATIONS

Electrometer Amplifiers
Photodiode Preamp
pH Electrode Buffer
Vacuum Ion Gage Measurement

PRODUCT DESCRIPTION

The AD549 is a monolithic electrometer operational amplifier with very low input bias current. Input offset voltage and input offset voltage drift are laser trimmed for precision performance. The AD549's ultralow input current is achieved with "Topgate" JFET technology, a process development exclusive to Analog Devices. This technology allows the fabrication of extremely low input current JFETs compatible with a standard junctionisolated bipolar process. The $10^{15} \Omega$ common-mode impedance, a result of the bootstrapped input stage, ensures that the input current is essentially independent of common-mode voltage.

The AD549 is suited for applications requiring very low input current and low input offset voltage. It excels as a preamp for a wide variety of current output transducers, such as photodiodes, photomultiplier tubes, or oxygen sensors. The AD549 can also be used as a precision integrator or low droop sample and hold. The AD549 is pin-compatible with standard FET and electrometer op amps, allowing designers to upgrade the performance of present systems at little additional cost.
The AD549 is available in a TO-99 hermetic package. The case is connected to Pin 8 so that the metal case can be independently connected to a point at the same potential as the input terminals, minimizing stray leakage to the case.
*Protected by Patent No. 4,639,683.

CONNECTION DIAGRAM

GUARD PIN, CONNECTED TO CASE

NC = NO CONNECTION

The AD549 is available in four performance grades. The J, K, and L versions are rated over the commercial temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The S grade is specified over the military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is available processed to MIL-STD-883B, Rev C. Extended reliability plus screening is also available. Plus screening includes 168 -hour burn-in, as well as other environmental and physical tests derived from MIL-STD-883B, Rev C.

PRODUCT HIGHLIGHTS

1. The AD549's input currents are specified, 100% tested, and guaranteed after the device is warmed up. Input current is guaranteed over the entire common-mode input voltage range.
2. The AD549's input offset voltage and drift are laser trimmed to 0.25 mV and $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{AD} 549 \mathrm{~K})$, and 1 mV and $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (AD549J).
3. A maximum quiescent supply current of $700 \mu \mathrm{~A}$ minimizes heating effects on input current and offset voltage.
4. AC specifications include 1 MHz unity gain bandwidth and $3 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Settling time for a 10 V input step is $5 \mu \mathrm{~s}$ to 0.01%.
5. The AD549 is an improved replacement for the AD515, the OPA104, and the 3528.

REV. B

[^0]

Parameter	AD549			AD549K			AD549L			AD549S			Unit										
	Min	Typ	Max																				
INPUT BIAS CURRENT ${ }^{1}$ Either Input, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ Either Input, $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$ Either Input at $\mathrm{T}_{\mathrm{MAX}}$, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ Offset Current Offset Current at $\mathrm{T}_{\text {MAX }}$		$\begin{aligned} & 150 \\ & 150 \\ & \\ & 11 \\ & 50 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 0} \\ & 250 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \\ & 4.2 \\ & 30 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \\ & \\ & 2.8 \\ & 20 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 75 \\ & 75 \\ & \\ & 420 \\ & 30 \\ & 125 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	fA fA pA fA pA										
INPUT OFFSET VOLTAGE ${ }^{2}$ Initial Offset Offset at $\mathrm{T}_{\text {MAX }}$ vs. Temperature vs. Supply vs. Supply, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Long-Term Offset Stability		$\begin{aligned} & 0.5 \\ & 10 \\ & 32 \\ & 32 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.9 \\ & 20 \\ & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 2 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.4 \\ & 5 \\ & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 5 \\ & 10 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.9 \\ & 10 \\ & 32 \\ & 32 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 10 \\ & 10 \\ & 32 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 2.0 \\ & 15 \\ & 32 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \\ & \mu \mathrm{~V} / \text { Month } \end{aligned}$										
$\begin{aligned} & \text { INPUT VOLTAGE NOISE } \\ & \begin{aligned} \mathrm{f} & =0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ \mathrm{f} & =10 \mathrm{~Hz} \\ \mathrm{f} & =100 \mathrm{~Hz} \\ \mathrm{f} & =1 \mathrm{kHz} \\ \mathrm{f} & =10 \mathrm{kHz} \end{aligned} \end{aligned}$		$\begin{aligned} & 4 \\ & 90 \\ & 60 \\ & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 4 \\ & 90 \\ & 60 \\ & 35 \\ & 35 \end{aligned}$	6		$\begin{aligned} & 4 \\ & 90 \\ & 60 \\ & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 4 \\ & 90 \\ & 60 \\ & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V} \text { p-p } \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$										
INPUT CURRENT NOISE $\begin{aligned} & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.22 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.16 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.16 \end{aligned}$		$\begin{aligned} & \mathrm{fA} \mathrm{rms} \\ & \mathrm{fA} / \sqrt{\mathrm{Hz}} \end{aligned}$										
INPUT IMPEDANCE Differential $V_{\text {DIFF }}= \pm 1$ Common Mode $\mathrm{V}_{\mathrm{CM}}= \pm 10$		$\begin{aligned} & 10^{13} \\| 1 \\ & 10^{15} \\| 0 \end{aligned}$			$\begin{aligned} & 10^{13} \\| \\ & 10^{15} \\| \end{aligned}$			$\begin{aligned} & 10^{13} \\| \\ & 10^{15} \\| \end{aligned}$			$\begin{aligned} & 10^{13} \\| \\ & 10^{15} \\| \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$										
OPEN-LOOP GAIN $\begin{aligned} & \mathrm{V}_{\mathrm{O}} @ \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}} @ \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \end{aligned}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ $\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & 300 \\ & 300 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 250 \\ & 200 \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 250 \\ & 200 \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 250 \\ & 200 \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 100 \\ & 25 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 250 \\ & 150 \end{aligned}$		V / mV V / mV V / mV V / mV										
INPUT VOLTAGE RANGE Differential ${ }^{3}$ Common-Mode Voltage Common-Mode Rejection Ratio $\mathrm{V}=+10 \mathrm{~V},-10 \mathrm{~V}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & -10 \\ & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10 \end{aligned}$	$\begin{aligned} & -10 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 90 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10 \end{aligned}$	$\begin{aligned} & -10 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 90 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10 \end{aligned}$	$\begin{aligned} & -10 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 90 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & +10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$										
OUTPUT CHARACTERISTICS Voltage @ $R_{L}=10 \mathrm{k} \Omega$, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Voltage @ $R_{L}=2 \mathrm{k} \Omega$, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Short Circuit Current $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Load Capacitance Stability $\mathrm{G}=+1$	$\begin{array}{\|l} -12 \\ -10 \\ 15 \\ 9 \end{array}$	20 4000	$\begin{aligned} & +12 \\ & +10 \\ & 35 \end{aligned}$	$\begin{aligned} & -12 \\ & -10 \\ & 15 \\ & 9 \end{aligned}$	20 4000	$\begin{aligned} & +12 \\ & +10 \\ & 35 \end{aligned}$	$\begin{aligned} & -12 \\ & -10 \\ & 15 \\ & 9 \end{aligned}$	20 4000	$\begin{aligned} & +12 \\ & +10 \\ & 35 \end{aligned}$	$\begin{aligned} & -12 \\ & -10 \\ & 15 \\ & 6 \end{aligned}$	20 4000	$\begin{aligned} & +12 \\ & +10 \\ & 35 \end{aligned}$	V V mA mA pF										
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate Settling Time, 0.1\% 0.01\% Overload Recovery, 50\% Overdrive, G = - 1	0.7 2	$\begin{aligned} & 1.0 \\ & 50 \\ & 3 \\ & 4.5 \\ & 5 \\ & 2 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 50 \\ & 3 \\ & 4.5 \\ & 5 \\ & 2 \end{aligned}$		0.7 2	$\begin{aligned} & 1.0 \\ & 50 \\ & 3 \\ & 4.5 \\ & 5 \\ & 2 \end{aligned}$		0.7 2	$\begin{aligned} & 1.0 \\ & 50 \\ & 3 \\ & 4.5 \\ & 5 \\ & 2 \end{aligned}$		MHz kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$										

NOTES
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.
${ }^{1}$ Bias current specifications are guaranteed after five minutes of operation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Bias current increases by a factor of 2.3 for every $10^{\circ} \mathrm{C}$ rise in temperature.
${ }^{2}$ Input offset voltage specifications are guaranteed after five minutes of operation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
${ }^{3}$ Defined as max continuous voltage between the inputs such that neither input exceeds $\pm 10 \mathrm{~V}$ from ground.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . ± 18 V Internal Power Dissipation . 500 mW Input Voltage ${ }^{2}$. $\pm 18 \mathrm{~V}$ Output Short Circuit Duration Indefinite Differential Input Voltage $+\mathrm{V}_{\mathrm{S}}$ and $-\mathrm{V}_{\mathrm{S}}$ Storage Temperature Range (H) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range

AD549J (K, L) . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD549S . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ For supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

METALLIZATION PHOTOGRAPH

Dimensions shown in inches and (mm)
Contact factory for latest dimensions.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD549 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TPC 1. Input Voltage Range vs. Supply Voltage

TPC 4. Quiescent Current vs. Supply Voltage

TPC 7. Open-Loop Gain vs. Temperature

TPC 2. Output Voltage Swing vs. Supply Voltage

TPC 5. CMRR vs. Input
Common-Mode Voltage

TPC 8. Change in Offset Voltage vs. Warmup Time

TPC 3. Output Voltage Swing vs. Load Resistance

TPC 6. Open-Loop Gain vs. Supply Voltage

TPC 9. Input Bias Current vs. Common-Mode Voltage

> AD549

TPC 10. Input Bias Current vs. Supply Voltage

TPC 13. Open-Loop Frequency Response

TPC 11. Input Voltage Noise Spectral Density

TPC 14. Large Signal
Frequency Response

TPC 17. Output Voltage
Swing and Error vs.
Settling Time

TPC 12. Noise vs. Source Resistance

TPC 15. CMRR vs. Frequency

TPC 16. PSRR vs. Frequency
Frequency Response

TPC 18. Unity Gain Follower

TPC 21. Unity Gain Inverter

TPC 19. Unity Gain Follower Large Signal Pulse Response

TPC 22. Unity Gain Inverter Large Signal Pulse Response

TPC 20. Unity Gain Follower Small Signal Pulse Response

TPC 23. Unity Gain Inverter Small Signal Pulse Response

MINIMIZING INPUT CURRENT

The AD549 has been optimized for low input current and offset voltage. Careful attention to how the amplifier is used will reduce input currents in actual applications.
The amplifier operating temperature should be kept as low as possible to minimize input current. Like other JFET input amplifiers, the AD549's input current is sensitive to chip temperature, rising by a factor of 2.3 for every $10^{\circ} \mathrm{C}$ rise. Figure 1 is a plot of AD549's input current versus its ambient temperature.

Figure 1. Input Bias Current vs. Ambient Temperature
On-chip power dissipation will raise the chip operating temperature, causing an increase in the input bias current. Due to the AD549's low quiescent supply current, the chip temperature when the (unloaded) amplifier is operating with 15 V supplies is less than $3^{\circ} \mathrm{C}$ higher than its ambient temperature. The difference in the input current is negligible.

However, heavy output loads can cause a significant increase in chip temperature and a corresponding increase in the input current. Maintaining a minimum load resistance of 10Ω is recommended. Input current versus additional power dissipation due to output drive current is plotted in Figure 2.

Figure 2. Input Bias Current vs. Additional Power Dissipation

CIRCUIT BOARD NOTES

There are a number of physical phenomena that generate spurious currents that degrade the accuracy of low current measurements. Figure 3 is a schematic of an I-to-V converter with these parasitic currents modeled.
Finite resistance from input lines to voltages on the board, modeled by resistor R_{P}, results in parasitic leakage. Insulation resistance of over $10^{15} \Omega$ must be maintained between the amplifier's signal and supply lines in order to capitalize on the AD549's low input currents. Standard PC board material
does not have high enough insulation resistance. Therefore, the AD549's input leads should be connected to standoffs made of insulating material with adequate volume resistivity (e.g., Teflon). The surface of the insulator's surface must be kept clean in order to preserve surface resistivity. For Teflon, an effective cleaning procedure consists of swabbing the surface with high grade isopropyl alcohol, rinsing with deionized water, and baking the board at $80^{\circ} \mathrm{C}$ for 10 minutes.

Figure 3. Sources of Parasitic Leakage Currents
In addition to high volume and surface resistivity, other properties are desirable in the insulating material chosen. Resistance to water absorption is important since surface water films drastically reduce surface resistivity. The insulator chosen should also exhibit minimal piezoelectric effects (charge emission due to mechanical stress) and triboelectric effects (charge generated by friction). Charge imbalances generated by these mechanisms can appear as parasitic leakage currents. These effects are modeled by variable capacitor C_{P} in Figure 3. Table I lists various insulators and their properties.*

Table I. Insulating Materials and Characteristics

Material	Volume Resistivity $($ V-CM $)$	Minimal Triboelectric Effects	Minimal Piezoelectric Effects	Resistance to Water Absorption
Teflon ${ }^{\circledR}$	$10^{17}-10^{18}$	W	W	G
Kel- F^{\circledR}	$10^{17}-10^{18}$	W	M	G
Sapphire	$10^{16}-10^{18}$	M	G	G
Polyethylene	$10^{14}-10^{18}$	M	G	M
Polystyrene	$10^{12}-10^{18}$	W	M	M
Ceramic	$10^{12}-10^{14}$	W	M	W
Glass Epoxy	$10^{10}-10^{17}$	W	M	W
PVC	$10^{10}-10^{15}$	G	M	G
Phenolic	$10^{5}-10^{12}$	W	G	W

G-Good with Regard to Property

M-Moderate with Regard to Property
W-Weak with Regard to Property
Guarding the input lines by completely surrounding them with a metal conductor biased near the input lines' potential has two major benefits. First, parasitic leakage from the signal line is reduced since the voltage between the input line and the guard is very low. Second, stray capacitance at the input node is minimized. Input capacitance can substantially degrade signal band

[^1]width and the stability of the I-to-V converter. The case of the AD549 is connected to Pin 8 so that it can be bootstrapped near the input potential. This minimizes pin leakage and input common-mode capacitance due to the case. Guard schemes for inverting and noninverting amplifier topologies are illustrated in Figures 4 and 5.

Figure 4. Inverting Amplifier with Guard

Figure 5. Noninverting Amplifier with Guard
Other guidelines include keeping the circuit layout as compact as possible and keeping the input lines short. Keeping the assembly rigid and minimizing sources of vibration will reduce triboelectric and piezoelectric effects. All precision, high impedance circuitry requires shielding against interference noise. Low noise coaxial or triaxial cables should be used for remote connections to the input signal lines.

OFFSET NULLING

The AD549's input offset voltage can be nulled by using balance Pins 1 and 5, as shown in Figure 6. Nulling the input offset voltage in this fashion will introduce an added input offset voltage drift component of $2.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of nulled offset (a maximum additional drift of $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for the AD 549 K , $1.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for the AD 549 L , and $2.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for the AD 549 J$)$.

Figure 6. Standard Offset Null Circuit
The approach in Figure 7 can be used when the amplifier is used as an inverter. This method introduces a small voltage referenced to the power supplies in series with the amplifier's positive input terminal. The amplifier's input offset voltage drift with temperature is not affected. However, variation of the power supply voltages will cause offset shifts.

Figure 7. Alternate Offset Null Circuit for Inverter

AC RESPONSE WITH HIGH VALUE SOURCE AND FEEDBACK RESISTANCE

Source and feedback resistances greater than $100 \mathrm{k} \Omega$ will magnify the effect of the input capacitances (stray and inherent to the AD549) on the ac behavior of the circuit. The effects of common-mode and differential input capacitances should be taken into account since the circuit's bandwidth and stability can be adversely affected.

Figure 8. Follower Pulse Response from $1 M \Omega$ Source Resistance, Case Not Bootstrapped

Figure 9. Follower Pulse Response from $1 \mathrm{M} \Omega$ Source Resistance, Case Bootstrapped
In a follower, the source resistance and input common-mode capacitance form a pole that limits the bandwidth to $1 / 2 \pi \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{s}}$. Bootstrapping the metal case by connecting Pin 8 to the output minimizes capacitance due to the package. Figures 8 and 9 show the follower pulse response from a $1 \mathrm{M} \Omega$ source resistance with and without the package connected to the output. Typical common-mode input capacitance for the AD 549 is 0.8 pF .
In an inverting configuration, the differential input capacitance forms a pole in the circuit's loop transmission. This can create peaking in the ac response and possible instability. A feedback capacitance can be used to stabilize the circuit. The inverter pulse response with R_{F} and R_{S} equal to $1 \mathrm{M} \Omega$ appears in Figure 10. Figure 11 shows the response of the same circuit with a 1 pF feedback capacitance. Typical differential input capacitance for the AD549 is 1 pF .

COMMON-MODE INPUT VOLTAGE OVERLOAD

The rated common-mode input voltage range of the AD549 is from 3 V less than the positive supply voltage to 5 V greater than the negative supply voltage. Exceeding this range will degrade the amplifier's CMRR. Driving the common-mode voltage above the positive supply will cause the amplifier's output to saturate at the upper limit of the output voltage. Recovery time is typically $2 \mu \mathrm{~s}$ after the input has been returned to within the normal operating range. Driving the input common-mode voltage within 1 V of the negative supply causes phase reversal of the output signal. In this case, normal operation is typically resumed within $0.5 \mu \mathrm{~s}$ of the input voltage returning within range.

Figure 10. Inverter Pulse Response with $1 M \Omega$ Source and Feedback Resistance

Figure 11. Inverter Pulse Response with $1 M \Omega$ Source and Feedback Resistance, 1 pF Feedback Capacitance

DIFFERENTIAL INPUT VOLTAGE OVERLOAD

A plot of the AD549's input currents versus differential input voltage (defined as $\mathrm{V}_{\mathrm{IN}^{+}}+\mathrm{V}_{\mathrm{IN}^{-}}$) appears in Figure 12. The input current at either terminal stays below a few hundred femtoamps until one input terminal is forced higher than 1 V to 1.5 V above the other terminal. Under these conditions, the input current limits at $30 \mu \mathrm{~A}$.

Figure 12. Input Current vs. Differential Input Voltage

INPUT PROTECTION

The AD549 safely handles any input voltage within the supply voltage range. Subjecting the input terminals to voltages beyond the power supply can destroy the device or cause shifts in input current or offset voltage if the amplifier is not protected.
A protection scheme for the amplifier as an inverter is shown in Figure 13. R_{P} is chosen to limit the current through the inverting input to 1 mA for expected transient (less than 1 second) overvoltage conditions, or to $100 \mu \mathrm{~A}$ for a continuous overload. Since R_{P} is inside the feedback loop, and is much lower in value than the amplifier's input resistance, it does not affect the inverter's dc gain. However, the Johnson noise of the resistor will add root sum of squares to the amplifier's input noise.

Figure 13. Inverter with Input Current Limit In the corresponding version of this scheme for a follower, shown in Figure 14, R_{P} and the capacitance at the positive input terminal will produce a pole in the signal frequency response at a $f=1 / 2 \pi$ RC. Again, the Johnson noise R_{P} will add to the amplifier's input voltage noise.

Figure 14. Follower with Input Current Limit
Figure 15 is a schematic of the AD549 as an inverter with an input voltage clamp. Bootstrapping the clamp diodes at the inverting input minimizes the voltage across the clamps and keeps the leakage due to the diodes low. Low leakage diodes, such as the FD333s, should be used and should be shielded from light to keep photocurrents from being generated. Even with these precautions, the diodes will measurably increase the input current and capacitance.

Figure 15. Input Voltage Clamp with Diodes

SAMPLE AND DIFFERENCE CIRCUIT TO MEASURE ELECTROMETER LEAKAGE CURRENTS

There are a number of methods used to test electrometer leakage currents, including current integration and direct current to voltage conversion. Regardless of the method used, board and interconnect cleanliness, proper choice of insulating materials (such as Teflon or Kel-F), correct guarding and shielding techniques, and care in physical layout are essential to making accurate leakage measurements.

Figure 16 is a schematic of the sample and difference circuit. It uses two AD549 electrometer amplifiers (A and B) as current-to voltage converters with high value $\left(10^{10} \Omega\right)$ sense resistors (RSa and RSb). R1 and R2 provide for an overall circuit sensitivity of $10 \mathrm{fA} / \mathrm{mV}$ (10 pA full scale). C_{C} and C_{F} provide noise suppression and loop compensation. C_{C} should be a low leakage polystyrene capacitor. An ultralow leakage Kel-F test socket is used for contacting the device under test. Rigid Teflon coaxial cable is used to make connections to all high impedance nodes. The use of rigid coaxial cable affords immunity to error induced by mechanical vibration and provides an outer conductor for shielding. The entire circuit is enclosed in a grounded metal box.

Figure 16. Sample and Difference Circuit for Measuring Electrometer Leakage Currents
The test apparatus is calibrated without a device under test present. A five-minute stabilization period after the power is turned on is required. First, $V_{\text {ERR1 }}$ and $V_{\text {ERR } 2}$ are measured. These voltages are the errors caused by the offset voltages and leakage currents of the current to voltage converters.

$$
\begin{aligned}
& V_{E R R 1}=10\left(V_{O S} A-I_{B} A \times R S a\right) \\
& V_{E R R 2}=10\left(V_{O S} B-I_{B} B \times R S b\right)
\end{aligned}
$$

Once measured, these errors are subtracted from the readings taken with a device under test present. Amplifier B closes the feedback loop to the device under testing, in addition to providing the current to voltage conversion. The offset error of the device

AD549

under testing appears as a common-mode signal and does not affect the test measurement. As a result, only the leakage current of the device under testing is measured.

$$
\begin{aligned}
V_{A}-V_{E R R 1} & =10\left[R S a \times I_{B}(+)\right] \\
V_{\mathrm{X}}-V_{\mathrm{ERR} 2} & =10\left[\mathrm{RSb} \times I_{B}(-)\right]
\end{aligned}
$$

Although a series of devices can be tested after only one calibration measurement, calibration should be updated periodically to compensate for any thermal drift of the current to voltage converters or changes in the ambient environment. Laboratory results have shown that repeatable measurements within 10 fA can be realized when this apparatus is properly implemented. These results are achieved in part by the design of the circuit, which eliminates relays and other parasitic leakage paths in the high impedance signal lines, and in part by the inherent cancellation of errors through the calibration and measurement procedure.

PHOTODIODE INTERFACE

The AD549's low input current and low input offset voltage make it an excellent choice for very sensitive photodiode preamps (Figure 17). The photodiode develops a signal current, I_{S}, equal to:

$$
I_{S}=R \times P
$$

where P is light power incident on the diode's surface in watts and R is the photodiode responsivity in amps/watt. R_{F} converts the signal current to an output voltage:

$$
V_{\text {OUT }}=R_{F} \times I_{S}
$$

Figure 17. Photodiode Preamp
DC error sources and an equivalent circuit for a small area (0.2 mm square) photodiode are indicated in Figure 18.

Figure 18. Photodiode Preamp DC Error Sources
Input current, I_{B}, will contribute an output voltage error, $\mathrm{V}_{\mathrm{E} 1}$, proportional to the feedback resistance:

$$
V_{E 1}=I_{B} \times R_{F}
$$

The op amp's input voltage offset will cause an error current through the photodiode's shunt resistance, R_{S} :

$$
I=V_{O S} / R_{S}
$$

The error current will result in an error voltage $\left(\mathrm{V}_{\mathrm{E} 2}\right)$ at the amplifier's output equal to:

$$
V_{E 2}=\left(I+R_{F} / R_{S}\right) V_{O S}
$$

Given typical values of photodiode shunt resistance (on the order of $10^{9} \Omega$), R_{F} / R_{S} can easily be greater than one, especially if a large feedback resistance is used. Also, R_{F} / R_{S} will increase with temperature, since photodiode shunt resistance typically drops by a factor of 2 for every $10^{\circ} \mathrm{C}$ rise in temperature. An op amp with low offset voltage and low drift must be used in order to maintain accuracy. The AD549K offers guaranteed maximum 0.25 mV offset voltage and $5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ drift for very sensitive applications.

Photodiode Preamp Noise

Noise limits the signal resolution obtainable with the preamp. The output voltage noise divided by the feedback resistance is the minimum current signal that can be detected. This minimum detectable current divided by the responsivity of the photodiode represents the lowest light power that can be detected by the preamp.
Noise sources associated with the photodiode, amplifier, and feedback resistance are shown in Figure 19; Figure 20 is the spectral density versus frequency plot of each of the noise source's contribution to the output voltage noise (circuit parameters in Figure 18 are assumed). Each noise source's rms contribution to the total output voltage noise is obtained by integrating the square of its spectral density function over frequency. The rms value of the output voltage noise is the square root of the sum of all contributions. Minimizing the total area under these curves will optimize the preamplifier's resolution for a given bandwidth.
The photodiode preamp in Figure 17 can detect a signal current of 26 fA rms at a bandwidth of 16 Hz , which, assuming a photodiode responsivity of $0.5 \mathrm{~A} / \mathrm{W}$, translates to a 52 fW rms minimum detectable power. The photodiode used has a high source resistance and low junction capacitance. C_{F} sets the signal bandwidth with R_{F} and also limits the "peak" in the noise gain that multiplies the op amp's input voltage noise contribution. A single pole filter at the amplifier's output limits the op amp's output voltage noise bandwidth to 26 Hz , a frequency comparable to the signal bandwidth. This greatly improves the preamplifier's signal-to-noise ratio (in this case, by a factor of 3).

Figure 19. Photodiode Preamp Noise Sources

Figure 20. Photodiode Preamp Noise Sources' Spectral Density vs. Frequency

Log Ratio Amplifier

Logarithmic ratio circuits are useful for processing signals with wide dynamic range. The AD549L's 60 fA maximum input current makes it possible to build a \log ratio amplifier with 1% \log conformance for input current ranging from 10 pA to 1 mA , a dynamic range of 160 dB .
The log ratio amplifier in Figure 21 provides an output voltage proportional to the \log base 10 of the ratio of the input currents I1 and I2. Resistors R1 and R2 are provided for voltage inputs. Since NPN devices are used in the feedback loop of the frontend amplifiers that provide the log transfer function, the output is valid only for positive input voltages and input currents. The input currents set the collector currents IC1 and IC2 of a matched pair of \log transistors Q1 and Q2 to develop voltages VA and VB:

$$
V A, B=-(k T / q) \ln I C / I E S
$$

where IES is the transistors' saturation current.
The difference of VA and VB is taken by the subtractor section to obtain:

$$
V C=(\mathrm{kT} / q) \ln (I C 2 / I C 1)
$$

VC is scaled up by the ratio of $(\mathrm{R} 9+\mathrm{R} 10) / \mathrm{R} 8$, which is equal to approximately 16 at room temperature, resulting in the output voltage:

$$
\mathrm{V}_{\text {OUT }}=1 \times \log (I C 2 / I C 1) V
$$

R 8 is a resistor with a positive $3500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient to provide the necessary temperature compensation. The parallel combination of R15 and R7 is provided to keep the subtractor section's gain for positive and negative inputs matched over temperature.
Frequency compensation is provided by R11, R12, C1, and C2. The bandwidth of the circuit is 300 kHz at input signals greater than $50 \mu \mathrm{~A}$ and decreases smoothly with decreasing signal levels.
To trim the circuit, set the input currents to $10 \mu \mathrm{~A}$ and trim A3's offset using the amplifier's trim potentiometer so the output equals 0 . Then set I 1 to $1 \mu \mathrm{~A}$ and adjust the output to equal 1 V by trimming R10. Additional offset trims on the amplifiers A1 and A2 can be used to increase the voltage input accuracy and dynamic range.

The very low input current of the AD549 makes this circuit useful over a very wide range of signal currents. The total input current (which determines the low level accuracy of the circuit) is the sum of the amplifier input current, the leakage across the compensating capacitor (negligible if polystyrene or Teflon capacitor is used), and the collector-to-collector and collector-to-base leakages of one side of the dual log transistors. The magnitude of these last two leakages depend on the amplifier's input offset voltage and are typically less than 10 fA with 1 mV offsets. The low level accuracy is limited primarily by the amplifier's input current, only 60 fA maximum when the AD549L is used.

Figure 21. Log Ratio Amplifier
The effects of the emitter resistance of Q1 and Q2 can degrade the circuit's accuracy at input currents above $100 \mu \mathrm{~A}$. The networks composed of R13, D1, R16, R14, D2, and R17 compensate for these errors, so that this circuit has less than 1% \log conformance error at 1 mA input currents. The correct value for R13 and R14 depends on the type of log transistors used. $49.9 \mathrm{k} \Omega$ resistors were chosen for use with LM394 transistors. Smaller resistance values will be needed for smaller log transistors.

TEMPERATURE COMPENSATED pH PROBE AMPLIFIER

A pH probe can be modeled as a mV-level voltage source with a series source resistance dependent upon the electrode's composition and configuration. The glass bulb resistance of a typical pH electrode pair falls between $10^{6} \Omega$ and $10^{9} \Omega$. It is therefore important to select an amplifier with low enough input currents such that the voltage drop produced by the amplifier's input bias current and the electrode resistance does not become an appreciable percentage of a pH unit.

AD549

The circuit in Figure 22 illustrates the use of the AD549 as a pH probe amplifier. As with other electrometer applications, the use of guarding, shielding, Teflon standoffs, and so on is a must in order to capitalize on the AD549's low input current. If an AD549L (60 fA max input current) is used, the error contributed by the input current will be held below $60 \mu \mathrm{~V}$ for pH electrode source impedances up to $10^{9} \Omega$. Input offset voltage (which can be trimmed) will be below 0.5 mV .

Figure 22. Temperature Compensated pH Probe Amplifier

The pH probe output is ideally 0 V at a pH of 7 independent of temperature. The slope of the probe's transfer function, though predictable, is temperature dependent $(-54.2 \mathrm{mV} / \mathrm{pH}$ at 0 and $74.04 \mathrm{mV} / \mathrm{pH}$ at $100^{\circ} \mathrm{C}$). By using an AD590 temperature sensor and an AD535 analog divider, an accurate temperature compensation network can be added to the basic pH probe amplifier. Table II shows voltages at various points and illustrates the compensation. The AD549 is set for a noninverting gain of 13.51. The output of the AD590 circuitry (Point C) will be equal to 10 V at $100^{\circ} \mathrm{C}$ and decrease by $26.8 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. The output of the AD535 analog divider (Point D) will be a temperature compensated output voltage centered at 0 V for a pH of 7 and has a transfer function of $-1.00 \mathrm{~V} / \mathrm{pH}$ unit. The output range spans from $-7.00 \mathrm{~V}(\mathrm{pH}=14)$ to $+7.00 \mathrm{~V}(\mathrm{pH}=0)$.

Table II. Illustration of Temperature Compensation

PROBE TEMP	A (PROBE OUTPUT)	B (A 3 13.51)	C (590 OUTPUT)	D $(\mathbf{1 0 ~ B / C})$
0	54.20 mV	0.732 V	7.32 V	1.00 V
$25^{\circ} \mathrm{C}$	59.16 mV	0.799 V	7.99 V	1.00 V
$37^{\circ} \mathrm{C}$	61.54 mV	0.831 V	8.31 V	1.00 V
$60^{\circ} \mathrm{C}$	66.10 mV	0.893 V	8.93 V	1.00 V
$100^{\circ} \mathrm{C}$	74.04 mV	1.000 V	10.00 V	1.00 V

OUTLINE DIMENSIONS

8-Lead Metal Can [TO-99]

Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MO-002AK

Revision History

Location Page
7/02-Data Sheet changed from REV. A to REV. B.
Edits to SPECIFICATIONS

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: *Electronic Measurements, pp. 15-17, Keithley Instruments, Inc., Cleveland, Ohio, 1977.
 Teflon is a registered trademark of E.I. du Pont de Nemours and Company. Kel-F is a registered trademark of 3 M Company.

