
The µPD17104, tiny microcontroller, consists of 1K-byte (512 × 16) ROM, 16 × 4 bit RAM, and 16 input/output

ports.

The 17K architecture of the CPU uses general registers so that data memory can be manipulated directly

for effective programming. Every instruction is 1 word long, consisting of 16 bits.

FEATURES

• Program memory (ROM) : 1K bytes (512 × 16 bits)

• Data memory (RAM) : 16 × 4 bits

• Input/output ports : 16 ports (including four N-ch open-drain outputs)

• Instruction execution time : 2 µs (when operating at 8 MHz)

• Number of instructions : 24 (Each instruction is 1 word long.)

• Stack level : 1

• A standby function (with the STOP and HALT instructions)

• Data memory can retain data on low voltage (2.0 V at minimum).

• An oscillator for the system clock (for ceramic resonator)

• Operating supply voltage : 2.7 to 6.0 V (at 2 MHz)

4.5 to 6.0 V (at 8 MHz)

APPLICATIONS

• Controlling electric appliances or toys

ORDERING INFORMATION

Part number Package Quality grade

µPD17104CS-××× 22-pin plastic shrink DIP (300 mil) Standard

µPD17104GS-××× 24-pin plastic SOP (300 mil) Standard

Remark ××× : ROM code number

Please refer to Quality Grades on NEC Semiconductor Devices (Document number IEI-1209) published by NEC

Corporation to know the specification of quality grade on devices and its recommended applications.

 The information in this document is subject to change without notice.

DATA SHEET

MOS INTEGRATED CIRCUIT

© 1990

µPD17104

1991

4 BIT SINGLE-CHIP MICROCONTROLLER

Major changes in this revision are indicated by stars (★) in the margins.Document No. IC-2894B
 (O.D. No. IC-8345B)
Date Published October 1994 P
Printed in Japan

2

µPD17104

PIN CONFIGURATION (TOP VIEW)

BLOCK DIAGRAM OF THE µPD17104

1

2

3

4

5

6

7

8

9

10

11

22

21

20

19

18

17

16

15

14

13

12

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

3

NC

0P0C

1P0C

2P0C

3P0C

HALTP0B / RLS0

STOPP0B / RLS1

2P0B

3P0B

GND

VDD

P0A 2

P0A 1

P0A 0

P0D 3

P0D 2

P0D 1

P0D 0

RESET

X OUT

X IN

3

NC

0P0C

1P0C

2P0C

3P0C

P0A P0A

NC

HALTP0B / RLS0

STOPP0B / RLS1

2P0B

3P0B

GND

VDD

P0A 2

P0A 1

P0A 0

P0D 3

P0D 2

P0D 1

P0D 0

RESET

X OUT

X IN

NC

22-Pin Plastic Shrink DIP 24-Pin Plastic SOP

P
D

1
7

1
0

4
C

S
-×××

µ

P
D

1
7

1
0

4
G

S
-×××

µ

CPU CLK CLK STOP

ALU

N-ch open drain

P0D

CMOS

P0C

CMOS

P0B0/RLSHALT
P0B1/RLSSTOP

P0B2

P0C 0
P0C 1
P0C 2
P0C 3

P0D 0
P0D 1
P0D 2
P0D 3

VDD
GND

RESET

Instruc-
tion
decoder

Program counter

XIN

XOUT

P0B

Stack1 × 9 bits

ROM
512 × 16 bits

System clock
generator

RAM
16 × 4 bits

P0B3

P0A

CMOS
P0A 0
P0A 1
P0A 2
P0A 3

3

µPD17104

PINS

Pin functions

• Port pins

• Non-port pins

I/O: Input/output

P0B0/RLSHALT

P0B1/RLSSTOP

P0B2 , P0B3

P0C0-P0C3

P0D0-P0D3

I/O

I/O

I/O

For releasing the HALT mode

For releasing the STOP mode

• N-ch open-drain 4-bit I/O port (port 0B)

• A built-in pull-up resistor can be connected with a

mask option bit by bit.

• This open-drain port has a withstand voltage of 9 V.

CMOS (push-pull) 4-bit I/O port (port 0C)

CMOS (push-pull) 4-bit I/O port (port 0D)

• Open-drain:

High impedance (input

mode)

• With pull-up resistor

selected:

High Level (input mode)

High impedance (input mode)

High impedance (input mode)

Pin I/O Function Reset

P0A0-P0A3 I/O CMOS (push-pull) 4-bit I/O port (port 0A) High impedance (input mode)

Input

–

–

–

Pin I/O Function

• System reset input pin

• A built-in pull-up resistor can be connected with a mask option.

Positive power supply pin

GND pin

Pins to be connected to the system clock resonator

RESET

VDD

GND

XIN, XOUT

4

µPD17104

Equivalent input/output circuits

Below are simplified diagrams of the equivalent input/output circuits.

(1) P0A, P0C, and P0D

(2) P0B0 and P0B1

DDV

IN/OUT

P-ch

N-ch

P-ch

N-ch

DDV

Data

Output
disable

DDV

IN/OUT

Pull-up resistor
(mask option)

N-ch
Data

Output
disable

DDV

P-ch

N-ch

Stand-by
release

5

µPD17104

(3) P0B2 and P0B3

(4) RESET

DDV

IN/OUT

Pull-up resistor
(mask option)

N-ch
Data

Output
disable

DDV

P-ch

N-ch

DDV

Pull-up resistor
(mask option)

DDV

IN

6

µPD17104

Conditions and handling

Internal External

★

Pin

–

Pull-up resistors that can be specified by

the mask option are not incorporated.

Pull-up resistors that can be specified with

the mask option are incorporated.

–

Outputs low level without pull-up resistors

that can be specified with the mask option

Outputs high level with pull-up resistors

that can be specified with the mask option

Port P0A, P0C, P0D

P0B

P0A, P0C, P0D

(CMOS ports)

P0B

(N-ch open-

drain port)

Input

mode

Output

mode

HANDLING UNUSED PINS

Connect unused pins as follows:

Note When a pin is pulled up to VDD or pulled down to ground outside the chip, take the driving capacity and

maximum current consumption of a port into consideration. When using high-resistance pull-up or pull-

down resistors, apply appropriate countermeasures to ensure that noise is not attracted by the resistors.

Although the optimum pull-up or pull-down resistor varies with the application circuit, in general a resistor

of 10 to 100 kilohms is suitable.

Caution To fix the output level of a pin, it is recommended that the level be specified repeatedly within a loop

in a program.

NOTES ON USE OF THE RESET PIN

The RESET pin has the test mode selecting function for testing the internal operation of the µPD17104 (IC

test), besides the functions shown in PINS.

Applying a voltage exceeding VDD to the RESET pin causes the µPD17104 to enter the test mode. When

noise exceeding VDD comes in during normal operation, the device is switched to the test mode.

For example, if the wiring from the RESET pin is too long, noise may be induced on the wiring, causing

this mode switching.

When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If

noise yet arises, use an external part to suppress it as shown below.

• Connect a diode with low VF between the pin • Connect a capacitor between the pin and VDD.

and VDD.

VDD

RESET

VDD

VDD

RESET

VDD

Diode with
low VF

Connect to VDD through pull-up resis-

tors. Or, connect to ground through

pull-down resistorsNote.

Leave open.

7

µPD17104

CONTENTS

1. PROGRAM COUNTER (PC) ... 9

1.1 CONFIGURATION OF THE PROGRAM COUNTER (PC) ... 9

1.2 FUNCTIONS OF THE PROGRAM COUNTER (PC) .. 9

2. STACK ... 10

3. PROGRAM MEMORY (ROM) .. 11

4. DATA MEMORY (RAM) ... 12

4.1 CONFIGURATION OF THE DATA MEMORY (RAM) ... 12

4.1.1 Functions of the General Data Memory ... 12

4.1.2 Functions of the General Register .. 12

4.1.3 Functions of the Port Register ... 12

4.1.4 Functions of the System Register ... 13

5. ALU BLOCK .. 16

5.1 ALU BLOCK CONFIGURATION... 16

5.2 FUNCTIONS OF THE ALU BLOCK .. 16

5.2.1 Functions of the ALU .. 16

5.2.2 Functions of Temporary Registers A and B ... 20

5.2.3 Functions of the Status Flip-Flop .. 20

5.2.4 Performing Operations in 4-Bit Binary ... 21

5.2.5 Performing Operations in BCD .. 21

5.2.6 Performing Operations in the ALU Block ... 22

5.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND

BCD) ... 23

5.3.1 Addition and Subtraction When CMP = 0 and BCD = 0 ... 23

5.3.2 Addition and Subtraction When CMP = 1 and BCD = 0 ... 23

5.3.3 Addition and Subtraction When CMP = 0 and BCD = 1 ... 24

5.3.4 Addition and Subtraction When CMP = 1 and BCD = 1 ... 24

5.3.5 Warnings Concerning Use of Arithmetic Operations ... 25

5.4 LOGICAL OPERATIONS ... 25

5.5 BIT EVALUATIONS .. 26

5.5.1 TRUE (1) Bit Evaluation .. 26

5.5.2 FALSE (0) Bit Evaluation ... 27

5.6 COMPARISON EVALUATIONS ... 27

5.6.1 "Equal" Evaluation ... 28

5.6.2 "Not Equal" Evaluation ... 28

5.6.3 "Greater Than or Equal" Evaluation ... 29

5.6.4 "Less Than" Evaluation ... 29

5.7 ROTATIONS .. 30

5.7.1 Rotation to the Right .. 30

5.7.2 Rotation to the Left ... 31

★

8

µPD17104

6. PORTS ... 32

6.1 PORT 0A (P0A0 TO P0A3) .. 32

6.2 PORT 0B (P0B0/RLSHALT, P0B1/RLSSTOP, P0B2, P0B3) ... 32

6.3 PORT 0C (P0C0 TO P0C3) ... 32

6.4 PORT 0D (P0D0 TO P0D3) .. 33

6.5 Notes on Manipulating Port Registers ... 34

7. STANDBY FUNCTIONS... 35

7.1 HALT MODE .. 35

7.2 STOP MODE.. 35

7.3 SETTING AND RELEASING THE STANDBY MODES... 35

7.4 HARDWARE STATUSES IN STANDBY MODE ... 36

7.5 TIMING FOR RELEASING THE STANDBY MODES .. 36

8. RESET FUNCTION ... 38

8.1 SYSTEM RESET .. 38

9. RESERVED WORDS USED IN ASSEMBLY LANGUAGE... 39

9.1 MASK-OPTION PSEUDO INSTRUCTIONS .. 39

9.1.1 OPTION and ENDOP Pseudo Instructions .. 39

9.1.2 Mask-Option Definition Pseudo Instructions... 39

9.2 RESERVED SYMBOLS ... 41

10. INSTRUCTION SET.. 42

10.1 INSTRUCTION SET LIST ... 42

10.2 INSTRUCTIONS .. 43

10.3 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS ... 45

11. ELECTRICAL CHARACTERISTICS .. 46

12. CHARACTERISTIC CURVES (REFERENCE) .. 50

13. PACKAGE DRAWINGS .. 52

14. RECOMMENDED SOLDERING CONDITIONS .. 56

15. TINY MICROCONTROLLER FAMILY .. 57

APPENDIX DEVELOPMENT TOOLS ... 58

★

★

★

9

µPD17104

1. PROGRAM COUNTER (PC)

1.1 CONFIGURATION OF THE PROGRAM COUNTER (PC)

As shown in Fig. 1-1, the program counter is a 9-bit binary counter.

Fig. 1-1 Program Counter

1.2 FUNCTIONS OF THE PROGRAM COUNTER (PC)

The program counter specifies the address of a program memory (ROM) or a program.

Usually, every time an instruction is executed, the program counter is incremented by one. When a branch

instruction (BR), a subroutine call instruction (CALL), or a return instruction (RET) is executed, the address

specified in the operand is loaded in the PC. Then the instruction in the address is executed. When a skip

instruction is executed, the address of the instruction next to the skip instruction is specified irrespective of

the contents of the skip instruction. If the skip conditions are satisfied, the instruction next to the skip

instruction is regarded as a No Operation (NOP) instruction. So, the NOP instruction is executed and the

address of the next instruction is specified.

PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

9 bits

10

µPD17104

2. STACK

Stack of the µPD17104 is a register in which the return address of a program is saved when a subroutine

call instruction is executed. One level of address stack is provided.

Fig. 2-1 shows the relationship between the PC, the stack, and the operand of BR and CALL instructions.

Fig. 2-1 Relationship between the PC, the Stack, and the Operand of BR and CALL Instructions

In Fig. 2-1, AHn, AMn, and ALn (0 ≤ n ≤ 3) indicate bit positions in a 16-bit instruction as follows:

Fig. 2-2 Configuration of a 16-Bit Instruction

When the assembler (AS17K) is not used and a BR or CALL instruction is used, AH2 and AH1 must be set

to 0.

Reset input clears all bits of the program counter to 0.

MSB LSB
BR and CALL
instructions FH EH DH CH BH AH 9H 8H 7H 6H 5H 4H 3H 2H 1H 0H

AH2 AH1 AH0 AM3 AM2 AM1 AM0 AL3 AL2 AL1 AL0Operation code

Operand

PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

S8 S7 S6 S5 S4 S3 S2 S1 S0

AH0 AM3 AM2 AM1 AM0 AL3 AL2 AL1 AL0

CALL

BR, CALL

RET
RETSK

Instructions

PC

Stack

Operand of BR and
CALL instructions

11

µPD17104

3. PROGRAM MEMORY (ROM)

Fig. 3-1 shows the program memory (ROM) configuration.

As shown in the figure, the program memory has 512 words by 16 bits.

The program memory has been addressed in units of 16 bits. The addresses 0000H to 01FFH are specified

by the program counter (PC).

Every instruction is a 1 word long, consisting of 16 bits. One instruction can therefore be stored at one

address in program memory.

Address 0000H is used as a reset start address.

Fig. 3-1 Program Memory Map

0000H

01FFH

16 bits

512 words

12

µPD17104

4. DATA MEMORY (RAM)

The data memory stores data of arithmetic/logic and control operations. Data can be always written to or

read from it by means of instructions.

4.1 CONFIGURATION OF THE DATA MEMORY (RAM)

Fig. 4-1 shows the configuration of the data memory (RAM).

The data memory is configured in units of four bits, or “one nibble,” and an address is assigned to each

four bits of data. The high-order three bits are called the “row address,” and the low-order four bits are called

the “column address.”

According to its functions, the data memory is divided into three blocks as shown below: General data

memory, port register, and system register.

Fig. 4-1 Data Memory Map

4.1.1 Functions of the General Data Memory

The general data memory is a part of the data memory from which the system register (SYSREG) and port

register are excluded. By executing a data memory manipulation instruction, a four-bit arithmetic operation

and comparison, evaluation, and transfer between data on data memory and any immediate data can be

executed with a single operation.

4.1.2 Functions of the General Register

The general register indicates any identical row address (16 nibbles) in the data memory specified in the

register pointer (RP) in the system register. Since the µPD17104 register pointer is always set to 0, the general

data memory is also used as a general register. The general register can operate or transfer data to and from

the data memory.

4.1.3 Functions of the Port Register

The port register is used to set output data or to read the input data of input/output ports.

Once data is written to the port register corresponding to a port, the port is set to output mode and outputs

the data unless another data is rewritten (the output mode is maintained until the port register is reset).

Whenever a read instruction is executed for a port register, the read data indicates the states of the pins, not

the value of the port register, regardless of whether the pins are in the input or output mode.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

7

General data memory (general register)

Port register System register

Column address

Row
address

13

µPD17104

4.1.4 Functions of the System Register

The system register controls the CPU. The program status word (PSWORD) is the only system register in

the µPD17104.

Fig. 4-2 System Register Map

All four bits at address 7FH (PSW) and bit 0 at address 7EH are assigned to the program status word.

The BCD flag is mapped in bit 0 at address 7EH, the CMP flag is mapped in bit 3 at address 7FH, the CY

flag is mapped in bit 2, and the Z flag is mapped in bit 1 at address 7FH.

The high-order three bits at address 7EH and bit 0 at address 7FH are always set to 0.

Address

Data

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

0 0 0 0 0 0 0 0 0 0

7EH 7FH

PSWORD

0000
B

it
0

B
it

3

B
it

2

B
it

1

B
it

0

B
C
D

C
M
P

C
Y

Z

Addresses 74H to 7DH are always set to 0.

PSW

14

µPD17104

Fig. 4-3 Configuration of the Program Status Word

Comparison instructions (SKE, SKNE, SKGE, or SKLT) do not change the state of the CY flag, but an

arithmetic operation may affect the CY flag according to the result even if the CMP flag is set.

Each bit of the program status word is initialized to 0 when a reset signal is applied.

The Z flag in the program status word changes according to the set value of the CMP flag as listed in Table

4-1.

PSW 0

Address 7EH Address 7FH
Bit0 Bit3 Bit0

Zero flag (Z)

Set to 1 when:
• An arithmetic operation generates a result
 of zero if CMP = 0.
• An arithmetic operation generates a result
 of zero and Z = 1 if CMP = 1.
 When the Z flag is already 0, it remains
 unchanged.

Reset to 0 when:
• An arithmetic operation generates a result
 other than zero.

Carry flag
(CY)

Set to 1 when:
• An addition produces a carry or a subtraction
 produces a borrow.
• The LSB of the operand in the RORC
 instruction is 1.

Reset to 0 when:
• Neither a carry nor borrow is produced.
• The LSB of the operand in the RORC
 instruction is 0.

Compare
flag (CMP)

If this flag is set, the result of an arithmetic
operation is not stored in memory or
general registers. The flag is automatically
reset by executing the SKT or SKF instruction.

BCD flag
(BCD)

If this flag is set, arithmetic operations are
performed in decimal, and if this flag is reset,
arithmetic operations are performed in binary.

BCD CMP CY Z

15

µPD17104

Table 4-1 Change in Z Flag

While CMP is 1, if an arithmetic operation results in 0H when the value of the Z flag is 1, the Z flag does

not change. If an arithmetic operation results in other than 0H, the Z flag is reset to 0 and remains intact even

when a second arithmetic operation results in 0H.

After the CMP and Z flags are set to 1, subtraction and comparison are performed several times. Then,

if the Z flag still indicates 1, all of the comparison operations showed a match, resulting in 0. If the Z flag is

0 after the comparison operations, a mismatch occurred in at least one comparison operation.

Example of 12-bit data comparison

; Is the 12-bit data stored in M001, M002, and M003 equal to 456H?

CMP456:

SET2 CMP, Z

SUB M001, #4 ; Stores the data in M001, M002, and M003.

SUB M002, #5 ; Does not damaged the data.

SUB M003, #6 ;

; CLR1 CMP

SKT Z ; Resets CMP automatically when the bit test instruction is executed.

BR DIFFER ; ≠ 456H

BR AGREE ; = 456H

When arithmetic operation results in 0

When arithmetic operation results in a non-zero value

Conditions

★

Z ← 1

Z ← 0

Z flag does not change

Z ← 0

CMP = 0 CMP = 1

16

µPD17104

5. ALU BLOCK

The ALU is used for performing arithmetic operations, logical operations, bit evaluations, comparison

evaluations, and rotations on 4-bit data.

5.1 ALU BLOCK CONFIGURATION

Fig. 5-1 shows the configuration of the ALU block.

As shown in Fig. 5-1, the ALU block consists of the main 4-bit data processor, temporary registers A and B,

the status flip-flop for controlling the status of the ALU, and the decimal conversion circuit for use during

arithmetic operations in BCD.

As shown in Fig. 5-1, the status flip-flop consists of the following flags: Zero flag flip-flop, carry flag flip-flop,

compare flag flip-flop, and the BCD flag flip-flop.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD: addresses

7EH, 7FH) located in the system register. The flags in the program status word are the following: Zero flag (Z),

carry flag (CY), compare flag (CMP), and the BCD flag (BCD).

5.2 FUNCTIONS OF THE ALU BLOCK

Arithmetic operations, logical operations, bit evaluations, comparison evaluations, and rotations are per-

formed using the instructions in the ALU block. Table 5-1 lists each arithmetic/logical instruction, evaluation

instruction, and rotation instruction.

By using the instructions listed in Table 5-1, 4-bit arithmetic/logical operations, evaluations and rotations can

be performed in a single instruction. Arithmetic operations in BCD can also be performed on one place in a single

instruction.

5.2.1 Functions of the ALU

The arithmetic operations consist of addition and subtraction. Arithmetic operations can be performed on

the contents of the general register and data memory or on immediate data and the contents of data memory.

Operations in binary are performed on four bits of data and operations in BCD are performed on one place.

Logical operations include ANDing, ORing, and XORing. Their operands can be general register contents and

data memory contents, or data memory contents and immediate data.

Bit evaluation is used to determine whether bits in 4-bit data in data memory are 0 or 1.

Comparison evaluation is used to compare contents of data memory with immediate data. It is used to

determine whether one value is equal to or greater than the other, less than the other, or if both values are equal

or not equal.

Rotation is used to shift 4-bit data in the general register one bit in the direction of its least significant bit

(rotation to the right).

★

17

µPD17104

Fig. 5-1 Configuration of the ALU

Data bus

Temporary
register A

Temporary
register B

Status
flip-flop

ALU
• Arithmetic operations
• Logical operations
• Bit evaluations
• Comparison

evaluations
• Rotations

Decimal con-
version circuit

7EH

b0

BCD

b3 b2 b1 b0

CMP CY Z 0

7FH

Program status word
(PSWORD)

Address

Name

Bit

Flag

Status flip-flop

BCD
flag
flip-flop

CMP
flag
flip-flop

CY
flag
flip-flop

Z
flag
flip-flop

Function outline

Indicates when the result of an arithmetic
operation is 0.

Stores the borrow or carry from an arithmetic
operation.

Used to indicate whether to store the result
of an arithmetic operation.

Used to indicate whether to perform
BCD correction for arithmetic operations.

18

µPD17104

Table 5-1 List of ALU Instructions (1/2)

ALU function Instruction Operation Explanation

Adds contents of general register and data memory.
Result is stored in general register.

Adds immediate data to contents of data memory. Result
is stored in data memory.

Adds contents of general register, data memory and carry
flag. Result is stored in general register.

Adds immediate data, contents of data memory and carry
flag. Result is stored in data memory.

Subtracts contents of data memory from contents of
general register. Result is stored in general register.

Subtracts immediate data from data memory. Result is
stored in data memory.

Subtracts contents of data memory and carry flag from
contents of general register. Result is stored in general
register.

Subtracts immediate data and carry flag from data
memory. Result is stored in data memory.

OR operation is performed on contents of general register
and data memory. Result is stored in general register.

OR operation is performed on immediate data and con-
tents of data memory. Result is stored in data memory.

AND operation is performed on contents of general
register and data memory. Result is stored in general
register.

AND operation is performed on immediate data and
contents of data memory. Result is stored in data
memory.

XOR operation is performed on contents of general register
and data memory. Result is stored in general register.

XOR operation is performed on immediate data and
contents of data memory. Result is stored in data
memory.

Skips next instruction if all bits in data memory specified
by n are TRUE (1). Result is not stored.

Skips next instruction if all bits in data memory specified
by n are FALSE (0). Result is not stored.

Skips next instruction if immediate data equals contents of
data memory. Result is not stored.

Skips next instruction if immediate data is not equal to
contents of data memory. Result is not stored.

Skips next instruction if contents of data memory is greater
than or equal to immediate data. Result is not stored.

Skips next instruction if contents of data memory is less
than immediate data. Result is not stored.

Rotate contents of the general register along with the CY
flag to the right. Result is stored in general register.

Addi-
tion

Sub-
trac-
tion

Logical
OR

Logical
AND

Logical
XOR

True

False

Equal

Not
equal

≥

<

Rotate
to the
right

ADD r, m

ADD m, #n4

ADDC r, m

ADDC m, #n4

SUB r, m

SUB m, #n4

SUBC r, m

SUBC m, #n4

OR r, m

OR m, #n4

AND r, m

AND m, #n4

XOR r, m

XOR m, #n4

SKT m, #n

SKF m, #n

SKE m, #n4

SKNE m, #n4

SKGE m, #n4

SKLT m, #n4

RORC r

Arithme-
tic
opera-
tions

Logical
opera-
tions

Bit
evalua-
tion

Com-
parison
evalua-
tion

Rotation

(r) ← (r) + (m)

(m) ← (m) + n4

(r) ← (r) + (m) + CY

(m) ← (m) + n4 + CY

(r) ← (r) - (m)

(m) ← (m) - n4

(r) ← (r) - (m) - CY

(m) ← (m) - n4 - CY

(r) ← (r) ∨ (m)

(m) ← (m) ∨ n4

(r) ← (r) ∧ (m)

(m) ← (m) ∧ n4

(r) ← (r) ∨ (m)

(m) ← (m) ∨ n4

CMP←0, if (m) ∧ n = n,
then skip

CMP←0, if (m) ∧ n = 0,
then skip

(m) - n4, skip if zero

(m) - n4, skip if not
zero

(m) - n4, skip if not
borrow

(m) - n4, skip if borrow

 (CY)→(r)b3→(r)b2→(r)b1→(r)b0

19

µPD17104

Table 5-1 List of ALU Instructions (2/2)

ALU function Operation depending on the program status word (PSWORD)

Value in

BCD flag

Value in
CMP flag

Operation Z flag

0 0
Store result of
binary operation

Set (1) when result of operation
is 0000B, otherwise reset (0).

0 1
Do not store
result of binary
operation

Status maintained when result
of operation is 0000B, otherwise
reset (0).

1 0
Store result of
decimal operation

Set (1) when result of operation
is 0000B, otherwise reset (0).

1 1
Do not store
result of decimal
operation

Status maintained when result
of operation is 0000B, otherwise
reset (0).

Don’t care

(maintained)
Don’t care

(maintained)
No change

Don’t care
(maintained)

Don’t care
(main-
tained)

CY flag

Don’t care
(maintained) Reset No change

Don’t care
(maintained)

Don’t care
(maintained)

Don’t care
(maintained)

No change Don’t care
(maintained)

Don’t care
(maintained)

Don’t care
(maintained)

No change Don’t care
(maintained)

Value in b0

of the gen-
eral register

Set (1)
when
carry or
borrow
is gener-
ated,
otherwise
reset (0).

Don’t care
(main-
tained)

Don’t care
(main-
tained)

Arithmetic
operation

Rotation

Comparison
evaluation

Bit evaluation

Logical
operations

20

µPD17104

5.2.2 Functions of Temporary Registers A and B

Temporary registers A and B are needed for processing of 4-bit data. These registers are used for temporary

storage of the first and second data operands of an instruction.

5.2.3 Functions of the Status Flip-Flop

The status flip-flop is used for controlling operation of the ALU and for storing data which has been processed.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD) located in

the system register. This means that when a flag in the system register is manipulated it is the same as

manipulating a flag in the status flip-flop. Each flag in the program status word is described below.

(1) Z flag

This flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0). However,

as described below, depending on the status of the CMP flag, the conditions which cause this flag to be set

(1) can be changed.

(i) When CMP = 0

Z flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0).

(ii) When CMP = 1

The previous state of the Z flag is maintained when the result of an arithmetic operation is 0000B,

otherwise it is reset (0). Only affected by arithmetic operations.

(2) CY flag

This flag is set (1) when a carry or borrow is generated in the result of an arithmetic operation, otherwise

it is reset (0).

When an arithmetic operation is being performed using a carry or borrow, the operation is performed using

the CY flag as the least significant bit. When a rotation (RORC instruction) is performed, the contents of the

CY flag becomes the most significant bit (bit b3) of the general register and the least significant bit of the

general register is stored in the CY flag.

Only affected by arithmetic operations and rotations.

(3) CMP flag

When the CMP flag is set (1), the result of an arithmetic operation is not stored in either the general register

or data memory.

When the bit evaluation instruction is performed, the CMP flag is reset (0).

The CMP flag does not affect comparison evaluations, logical operations, or rotations.

(4) BCD flag

When the BCD flag is set (1), all arithmetic operations are performed in BCD. When the flag is reset (0), all

operations are performed in 4-bit binary.

The BCD flag does not affect logical operations, bit evaluations, comparison evaluations, or rotations.

These flags can also be set through direct manipulation of the values in the program status word (PSWORD).

When the flags in the program status word are manipulated, the corresponding flag in the status flip-flop is also

manipulated.

21

µPD17104

5.2.4 Performing Operations in 4-Bit Binary

When the BCD flag is set to 0, arithmetic operations are performed in 4-bit binary.

5.2.5 Performing Operations in BCD

When the BCD flag is set to 1, arithmetic operations are performed in BCD. Table 5-2 shows the differences

in the results of operations performed in 4-bit binary and in BCD. When the result of an addition in BCD is equal

to or greater than 20, or the result of a subtraction in BCD is outside of the range -10 to +9, a value of 1010B (0AH)

or higher is stored as the result (shaded area in Table 5-2).

Table 5-2 Results of Arithmetic Operations Performed in 4-Bit Binary and BCD

Addition in
BCD

Operation
result

Operation
result

Operation
result

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1110

1111

1100

1101

1110

1111

1100

1101

1010

1011

1100

1101

CY CY

Addition in
4-bit binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Operation
result

Operation
Subtraction in
4-bit binary

Subtraction in
BCD

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1100

1101

1110

1111

1100

1101

1110

1111

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

CY CYOperation
result

22

µPD17104

5.2.6 Performing Operations in the ALU Block

When arithmetic operations, logical operations, bit evaluations, comparison evaluations or rotations in a

program are executed, the first data operand is stored in temporary register A and the second data operand is

stored in temporary register B.

The first data operand is four bits of data used to specify the contents of an address in the general register

or data memory. The second data operand is four bits of data used to either specify the contents of an address

in data memory or to be used as an immediate value. For example, in the instruction

ADD r, m

Second data operand

First data operand

the first data operand, r, is used to specify the contents of an address in the general register. The second data

operand, m, is used to specify the contents of an address in data memory. In the instruction

ADD m, #n4

the first data operand, m, is used to specify an address in data memory. The second operand, #n4, is immediate

data. In the rotation instruction

RORC r

only the first data operand, r (used to specify the contents of an address in the general register) is used.

Next, using the data stored in temporary registers A and B, the ALU executes the operation specified by the

instruction (arithmetic operation, logical operation, bit evaluation, comparison evaluation, or rotation). When

the instruction being executed is an arithmetic operation, logical operation, or rotation, the data processed by

the ALU is stored in the location specified by the first data operand (general register address or data memory

address) and the operation terminates. When the instruction being executed is a bit evaluation or comparison

evaluation, the result processed by the ALU is used to determine whether or not to skip the next instruction

(whether to treat next instruction as a no operation instruction: NOP) and the operation terminates.

Caution should be taken with regard to the following points:

(1) Arithmetic operations are affected by the CMP and BCD flags in the program status word.

(2) Logical operations are not affected by the CMP or BCD flag in the program status word. Logical operations

do not affect the Z or CY flags.

(3) Bit evaluation causes the CMP flag in the program status word to be reset.

23

µPD17104

5.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD)

As shown in Table 5-3, arithmetic operations consist of addition, subtraction, addition with carry, and

subtraction with borrow. These instructions are ADD, ADDC, SUB, and SUBC.

The ADD, ADDC, SUB, and SUBC instructions are further divided into addition and subtraction of the general

register and data memory and addition and subtraction of data memory and immediate data. When the operands

r and m are used, addition or subtraction is performed using the general register and data memory. When the

operands m and #n4 are used, addition or subtraction is performed using data memory and immediate data.

Arithmetic operations are affected by the status flip-flop and the program status word (PSWORD) in the system

register. The BCD flag in the program status word (PSWORD) is used to specify whether arithmetic operations

are to be performed in 4-bit binary or in BCD. The CMP flag is used to specify whether or not the results of

arithmetic operations are to be stored.

Sections 5.3.1 to 5.3.4 explain the relationship between each command and the program status word

(PSWORD).

Table 5-3 Types of Arithmetic Operations

5.3.1 Addition and Subtraction When CMP = 0 and BCD = 0

Addition and subtraction are performed in 4-bit binary and the result is stored in the general register or data

memory.

When the result of the operation is greater than 1111B (carry generated) or less than 0000B (borrow generated),

the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the Z flag is set (1) regardless of whether there is carry or borrow;

otherwise it is reset (0).

5.3.2 Addition and Subtraction When CMP = 1 and BCD = 0

Addition and subtraction are performed in 4-bit binary.

However, because the CMP flag is set (1), the result of the operation is not stored in either the general register

or data memory.

When there is a carry or borrow in the result of the operation, the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the previous state of the Z flag is maintained; otherwise it is reset

(0).

General register and data memory ADD r, m

Data memory and immediate data ADD m, #n4

General register and data memory ADDC r, m

Data memory and immediate data ADDC m, #n4

General register and data memory SUB r, m

Data memory and immediate data SUB m, #n4

General register and data memory SUBC r, m

Data memory and immediate data SUBC m, #n4

Without carry ADD

With carry ADDC

Without borrow SUB

With borrow SUBC

Addition

Subtraction

Arithmetic

operation

24

µPD17104

5.3.3 Addition and Subtraction When CMP = 0 and BCD = 1

BCD operations are performed.

The result of the operation is stored in the general register or data memory. When the result of the operation

is greater than 1001B (9D) or less than 0000B (0D), the carry flag is set (1), otherwise it is reset (0).

When the result of the operation is 0000B (0D), the Z flag is set (1), otherwise it is reset (0).

Operations in BCD are performed by first computing the result in binary and then by using the decimal

conversion circuit to convert the result to decimal. For information concerning the binary to decimal conversion,

see Table 5-2 in Section 5.2.5.

In order for operations in BCD to be performed properly, note the following:

(1) Result of an addition must be in the range 0D to 19D.

(2) Result of a subtraction must be in the range 0D to 9D, or in the range -10D to -1D.

The following shows which value is considered the CY flag in the range 0D to 19D (shown in hexadecimal):

0, 0000B to 1, 0011B

CY CY

The following shows which value is considered the CY flag in the range -10D to -1D (shown in hexadecimal):

1, 0110B to 1, 1111B

CY CY

When operations in BCD are performed outside of the limits of (1) and (2) stated above, the CY flag is set (1)

and the result of operation is output as a value greater than or equal to 1010B (0AH).

5.3.4 Addition and Subtraction When CMP = 1 and BCD = 1

BCD operations are performed.

The result is not stored in either the general register or data memory.

In other words, the operations specified by CMP = 1 and BCD = 1 are both performed at the same time.

Example MOV RPL, #0001B ; Sets the BCD flag (BCD = 1).

MOV PSW, #1010B ; Sets the CMP and Z flag (CMP = 1, Z = 1) and resets the CY flag

; (CY = 0).

SUB M1, #0001B ; #

SUBC M2, #0010B ; $

SUBC M3, #0011B ; %

By executing the instructions in steps numbered #, $, and %, the twelve bits in memory locations

M1, M2, and M3 and the immediate data (321) can be compared in decimal.

25

µPD17104

5.3.5 Warnings Concerning Use of Arithmetic Operations

When performing arithmetic operations with the program status word (PSWORD), caution should be taken

with regard to the result of the operation being stored in the program status word.

Normally, the CY and Z flags in the program status word are set (1) or reset (0) according to the result of the

arithmetic operation being executed. However, when an arithmetic operation is performed on the program status

word itself, the result is stored in the program status word. This means that there is no way to determine if there

is a carry or borrow in the result of the operation nor if the result of the operation is zero.

However, when the CMP flag is set (1), results of arithmetic operations are not stored. Therefore, even in the

above case, the CY and Z flags will be properly set (1) or reset (0) according to the result of the operation.

5.4 LOGICAL OPERATIONS

As shown in Table 5-4, logical operations consist of logical OR, logical AND, and logical XOR. Accordingly,

the logical operation instructions are OR, AND, and XOR.

The OR, AND, and XOR instructions can be performed on either the general register and data memory, or on

data memory and immediate data. The operands of these instructions are specified in the same way as for

arithmetic operations ("r, m" or "m, #n4").

Logical operations are not affected by the BCD or CMP flags in the program status word (PSWORD). The

operations do not affect the CY and Z flags at all.

Table 5-4 Logical Operations

Table 5-5 Table of True Values for Logical Operations

General register and data memory OR r, m

Data memory and immediate data OR m, #n4

General register and data memory AND r, m

Data memory and immediate data AND m, #n4

General register and data memory XOR r, m

Data memory and immediate data XOR m, #n4

Logical

operation

Logical OR

Logical AND

Logical XOR

Logical AND

C = A AND B

A

0

0

1

1

Logical OR

C = A OR B

Logical XOR

C = A XOR B

A

0

0

1

1

B

0

1

0

1

C

0

0

0

1

B

0

1

0

1

C

0

1

1

1

A

0

0

1

1

B

0

1

0

1

C

0

1

1

0

26

µPD17104

5.5 BIT EVALUATIONS

As shown in Table 5-6, there are both TRUE (1) and FALSE (0) bit evaluation instructions.

The SKT instruction skips the next instruction when a bit is evaluated as TRUE (1) and the SKF instruction skips

the next instruction when a bit is evaluated as FALSE (0).

The SKT and SKF instructions can only be used with data memory.

Bit evaluations are not affected by the BCD flag in the program status word (PSWORD). The evaluations do

not affect the CY and Z flags at all. However, when an SKT or SKF instruction is executed, the CMP flag is reset

(0).

Sections 5.5.1 and 5.5.2 explain TRUE (1) and FALSE (0) bit evaluations.

Table 5-6 Bit Evaluation Instructions

5.5.1 TRUE (1) Bit Evaluation

The TRUE (1) bit evaluation instruction (SKT m, #n) is used to determine whether or not the bits specified by

n in the four bits of data memory m are TRUE (1). When all bits specified by n are TRUE (1), this instruction causes

the next instruction to be skipped.

Example MOV M1, #1011B

SKT M1, #1011B ; #

BR A

BR B

SKT M1, #1101B ; $

BR C

BR D

In this example, bits b3, b1, and b0 of data memory M1 are evaluated in step number #. Because

all the bits are TRUE (1), the program branches to B. In step number $, bits b3, b2, and b0 of data

memory M1 are evaluated. Since b2 of data memory M1 is FALSE (0), the program branches to

C.

TRUE (1) bit evaluation

SKT m, #n

FALSE (0) bit evaluation

SKF m, #n

Bit evaluation

27

µPD17104

5.5.2 FALSE (0) Bit Evaluation

The FALSE (0) bit evaluation instruction (SKF m, #n) is used to determine whether or not the bits specified

by n in the four bits of data memory m are FALSE (0). When all bits specified by n are FALSE (0), this instruction

causes the next instruction to be skipped.

Example MOV M1, #1001B

SKF M1, #0110B ; #

BR A ;

BR B ;

SKF M1, #1110B ; $

BR C ;

BR D ;

In this example, bits b2 and b1 of data memory M1 are evaluated in step number #. Because both

bits are FALSE (0), the program branches to B. In step number $, bits b3, b2, and b1 of data memory

M1 are evaluated. Since b3 of data memory M1 is TRUE (1), the program branches to C.

5.6 COMPARISON EVALUATIONS

As shown in Table 5-7, there are comparison evaluation instructions for determining if one value is "equal

to", "not equal to", "greater than or equal to", or "less than" another.

The SKE instruction is used to determine if two values are equal. The SKNE instruction is used to determine

two values are not equal. The SKGE instruction is used to determine if one value is greater than or equal to another

and the SKLT instruction is used to determine if one value is less than another.

The SKE, SKNE, SKGE, and SKLT instructions perform comparisons between a value in data memory and

immediate data. In order to compare values in the general register and data memory, a subtraction instruction

is performed according to the values in the CMP and Z flags in the program status word (PSWORD). For more

information concerning comparison of the general register and data memory, see Section 5.3.

Comparison evaluations are not affected by the BCD or CMP flags in the program status word (PSWORD). The

evaluations do not affect the CY and Z flags at all.

Sections 5.6.1 to 5.6.4 explain the "equal", "not equal", "greater than or equal", and "less than" comparison

evaluations.

Table 5-7 Comparison Evaluation Instructions

Equal

SKE m, #n4

Not equal

SKNE m, #n4

Greater than or equal

SKGE m, #n4

Less than

SKLT m, #n4

Comparison

evaluation

28

µPD17104

5.6.1 "Equal" Evaluation

The "equal" evaluation instruction (SKE m, #n4) is used to determine if immediate data and the contents of

a location in data memory are equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data

memory are equal.

Example MOV M1, #1010B

SKE M1, #1010B ; #

BR A

BR B

;

SKE M1, #1000B ; $

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1010B in step number

are equal, the program branches to B. In step number $, because the contents of data memory

M1 and immediate data 1000B are not equal, the program branches to C.

5.6.2 "Not Equal" Evaluation

The "not equal" evaluation instruction (SKNE m, #n4) is used to determine if immediate data and the contents

of a location in data memory are not equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data

memory are not equal.

Example MOV M1, #1010B

SKNE M1, #1000B ; #

BR A

BR B

;

SKNE M1, #1010B ; $

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1000B in step number

are not equal, the program branches to B. In step number $, because the contents of data memory

M1 and immediate data 1010B are equal, the program branches to C.

29

µPD17104

5.6.3 "Greater Than or Equal" Evaluation

The "greater than or equal" evaluation instruction (SKGE m, #n4) is used to determine if the contents of a

location in data memory is a value greater than or equal to the value of the immediate data operand. If the value

in data memory is greater than or equal to that of the immediate data, this instruction causes the next instruction

to be skipped.

Example MOV M1, #1000B

SKGE M1, #0111B ; #

BR A

BR B

;

SKGE M1, #1000B ; $

BR C

BR D

;

SKGE M1, #1001B ; %

BR E

BR F

In this example, the program will first branch to B since the value in data memory is larger than

that of the immediate data (#). Next it will branch to D since the value in data memory is equal

to that of the immediate data ($). Last it will branch to E since the value in data memory is less

than that of the immediate data (%).

5.6.4 "Less Than" Evaluation

The "less than" evaluation instruction (SKLT m, #n4) is used to determine if the contents of a location in data

memory is a value less than that of the immediate data operand. If the value in data memory is less than that

of the immediate data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B

SKLT M1, #1001B ; #

BR A

BR B

;

SKLT M1, #1000B ; $

BR C

BR D

;

SKLT M1, #0111B ; %

BR E

BR F

In this example, the program will first branch to B since the value in data memory is less than that

of the immediate data (#). Next it will branch to C since the value in data memory is equal to that

of the immediate data ($). Last it will branch to E since the value in data memory is greater than

that of the immediate data (%).

30

µPD17104

CY flag b3 b2 b1 b0

1 1 1 0 0

5.7 ROTATIONS

There are rotation instructions for rotation to the right and for rotation to the left.

The RORC instruction is used for rotation to the right.

The RORC instruction can only be used with the general register.

Rotation using the RORC instruction is not affected by the BCD or CMP flags in the program status word

(PSWORD). The rotation does not affect the Z flag at all.

Rotation to the left is performed by using the addition instruction ADDC.

Sections 5.7.1 and 5.7.2 explain rotation.

5.7.1 Rotation to the Right

The instruction used for rotation to the right (RORC r) rotates the contents of the general register in the direction

of its least significant bit.

When this instruction is executed, the contents of the CY flag becomes the most significant bit of the general

register (bit b3) and the least significant bit of the general register (bit b0) is placed in the CY flag.

Examples 1. MOV PSW, #0100B ; Sets CY flag to 1.

MOV R1, #1001B

RORC R1 ; #

When these instructions are executed, the following operation is performed.

Basically, when rotation to the right is performed, the following operation is executed:

CY flag → b3, b3 → b2, b2 → b1, b1 → b0, b0 → CY flag.

2. MOV PSW, #0000B ; Resets CY flag to 0.

MOV R1, #1000B

MOV R2, #0100B

MOV R3, #0010B

RORC R1

RORC R2

RORC R3

The program code above rotates the twelve bits in R1, R2, and R3 to the right.

31

µPD17104

5.7.2 Rotation to the Left

Rotation to the left is performed by using the addition instruction, "ADDC r, m".

Example MOV PSW, #0000B ; Resets CY flag to 0.

MOV R1, #1000B

MOV R2, #0100B

MOV R3, #0010B

ADDC R3, R3

ADDC R2, R2

ADDC R1, R1

The program code above rotates the twelve bits in R1, R2, and R3 to the left.

32

µPD17104

6. PORTS

6.1 PORT 0A (P0A0 TO P0A3)

Port 0A is a four-bit input/output port. CMOS (push-pull) outputs appear on these pins.

Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by

writing data to the port register in address 70H of the data memory. The output mode is maintained until the

system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of the

port 0A are placed in the output mode to continue to output written data. The data is retained until new data

is written to the register.

Whenever the port register is read, the read data indicates the states of the pinsNote, not the contents of

the port register, regardless of whether the pins are in the input or output mode. In this case, the contents

of the port register remain unchanged.

6.2 PORT 0B (P0B0/RLSHALT, P0B1/RLSSTOP, P0B2, P0B3)

Port 0B is a four-bit input/output port. Only N-ch open-drain outputs appear on the pins of port 0B. The

N-ch open-drain output mode allows application of 9 V, so it can be used for interfacing with a circuit operating

on a different power supply voltage.

Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by

writing data to the port register in address 71H of the data memory. The output mode is maintained until the

system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of port

0B are placed in the output mode to continue to output written data. The data is retained unless new data

is written to the register.

Writing 1 to the port register makes the N-ch open-drain output pin high-impedance. Therefore, the pin

which outputs 1 can be used as an input pin.

Whenever the port register is read, the read data indicates the states of the pinsNote, not the contents of

the port register, regardless of whether the pins are in the input or output mode. In this case, the contents

of the port register remain unchanged.

A P0B0 input signal releases the HALT mode as a pseudo interrupt. P0B1 input signal releases the STOP

mode as a pseudo interrupt. (See Section 7.)

6.3 PORT 0C (P0C0 TO P0C3)

Port 0C is a four-bit input/output port. CMOS (push-pull) outputs appear on those pins.

Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by

writing data to the port register in address 72H of the data memory. The output mode is maintained until the

system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of the

port 0C are placed in the output mode to continue to output written data. The data is retained unless new

data is written to the register.

Whenever the port register is read, the read data indicates the states of the pinsNote, not the contents of

the port register, regardless of whether the pins are in the input or output mode. In this case, the contents

of the port register remain unchanged.

Note In the output mode, design an external circuit appropriately depending on the output data.

33

µPD17104

6.4 PORT 0D (P0D0 TO P0D3)

Port 0D is a four-bit input/output port. CMOS (push-pull) outputs appear on these pins.

Input and output are set in units of nibbles. The input mode is set at reset, and the output mode is set by

writing data to the port register in address 73H of the data memory. The output mode is maintained until the

system is reset.

Output to the port is executed via the port register. Once data is written to the port register, all pins of the

port 0D are placed in the output mode to continue to output written data. The data is retained until new data

is written to the register.

Whenever the port register is read, the read data indicates the states of the pinsNote, not the contents of

the port register, regardless of whether the pins are in the input or output mode. In this case, the contents

of the port register remain unchanged.

Note In the output mode, design an external circuit appropriately depending on the output data.

Fig. 6-1 Port Register Map

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

0X

7X

Row
address

Address

Bit
symbol

Port register System register

70H 71H 72H 73H

P
0
B
2

P
0
B
1

P
0
B
0

P
0
C
3

P
0
C
2

P
0
C
1

P
0
C
0

P
0
D
3

P
0
D
2

P
0
D
1

P
0
D
0

P
0
A
3

P
0
A
2

P
0
A
0

P
0
B
3

P
0
A
1

34

µPD17104

★ 6.5 Notes on Manipulating Port Registers

The states of the I/O port pins of the µPD17104 can be read even when the port pins have been set to output

mode.

When a port register is manipulated with a built-in macro instruction (such as SETn or CLRn) or an AND,

OR, or XOR instruction, the states of those pins for which the state should remain unchanged may change

unexpectedly.

Especially when using some of the port 0B pins (N-ch open-drain outputs) as input pins, with the remaining

port 0B pins being used as output pins, always take the possibility of this change in the states of the pins into

consideration.

When a CLR1 P0B2 instruction (identical to an AND 71H, #1011B instruction) is applied to the port 0B pins,

the corresponding port register and internal states are changed, as shown in Fig. 6-2.

Assume that the states of port 0B are those shown in Fig. 6-2 #. Pins P0B3 and P0B2, used as output pins,

output high level, while pins P0B1 and P0B0, used as input pins, receive low level.

It is required that high level be output, inside the chip, from the port 0B pins to be used as input pins.

Although the µPD17103, µPD17103L, µPD17107, and µPD17107L do not support pin P0B3, it is virtually

assumed to exist within a program.

When a CLR1 P0B2 instruction is executed to set pin P0B2 to low, the states of the port 0B pins change us

shown in Fig. 6-2 $. The port register changes such that pins P0B1 and P0B0, required to output high level,

actually output low level. This is because the CLR1 P0B2 instruction has been applied to the states of the port

0B pins, but not to the states of the port register.

To prevent this problem, use another instruction, such as a MOV instruction, to specify the states of all port

0B pins, not merely the states of those pins whose states are to be changed. In this example, it is recommended

that a MOV 71H, 1011B instruction be used to set only pin P0B2 to low.

Fig. 6-2 Changes in the Port Register According to the Execution of a CLR1 POB2 Instruction

State

Before the instruction is executed

$ After the instruction is executed

Internal

Pin

P0B3 P0B2 P0B1 P0B0

Port register 1 1 1 1

H output H output H output H output

H H L (input) L (input)

Executing a CLR1 P0B2
instruction [AND 71H, #1011B]

State

Internal

Pin

P0B3 P0B2 P0B1 P0B0

Port register 1 0 0 0

H output L output L output L output

H L L L

H: High level, L: Low level

35

µPD17104

7. STANDBY FUNCTIONS

The µPD17104 provides two standby modes, the HALT mode and the STOP mode.

7.1 HALT MODE

The HALT mode stops the program counter (PC) while allowing the system clock to continue operating.

The HALT mode can be entered with the HALT instruction, and can be released by a reset signal (RESET) or

high-level input to the P0B0 pin. When the HALT mode is released by a high-level signal input to the P0B0

pin, the system does not wait for the system clock oscillation to settle. The instruction immediately after the

HALT instruction is executed.

When the HALT mode is released forcibly by the reset signal (RESET), normal system reset occurs, and the

program starts at address 0H.

7.2 STOP MODE

The STOP mode stops the system clock oscillation so that data can be retained at low power voltage. The

STOP mode can be entered with the STOP instruction, and can be released by a reset signal (RESET) or high-

level input to the P0B1 pin. When the mode is released by a high-level signal input to the P0B1 pin, the program

starts with the instruction immediately after the STOP instruction.

When the STOP mode is released forcibly by the reset signal (RESET), normal system reset occurs, and

the program starts at address 0H.

7.3 SETTING AND RELEASING THE STANDBY MODES

(1) Setting and releasing the HALT mode

Conditions for releasing the HALT mode are selected with the least significant bit of the operand in the

HALT instruction as shown in Table 7-1. The high-order three bits of the operand must be set to 0.

Table 7-1 Setting/Releasing Conditions Specified in the HALT Instruction

HALT 000XB ← 4-bit data in the operand

(2) Setting and releasing the STOP mode

Conditions to release the STOP mode are selected with the least significant bit of the operand in the STOP

instruction as shown in Table 7-2. The high-order three bits of the operand must be set to 0.

Conditions for setting/releasing the HALT modeX

After executing a HALT instruction, the system enters the HALT mode unconditionally.

The mode can be released only by the reset signal (RESET). After the mode is released, the program starts

at address 0H.

When a HALT instruction is executed with the POB0 pin being at low level, the system enters the HALT

mode. The mode can be released by the reset signal (RESET). When the mode is released, the program

starts at address 0H. This mode can also be released when a high-level signal is applied to the POB0 pin. In

this case, the program starts with the instruction immediately after the HALT instruction.

When a HALT instruction is executed with the POB0 pin being at high level, the instruction is ignored

(regarded as a NOP instruction) and the system does not enter the HALT mode.

0

1

★

36

µPD17104

Table 7-2 Setting/Releasing Conditions Specified in the STOP Instruction

STOP 000XB ← 4-bit data in the operand

7.4 HARDWARE STATUSES IN STANDBY MODE

Hardware statuses in standby mode are as follows:

Table 7-3 Hardware Statuses in Standby Mode

Conditions for setting/releasing the STOP modeX

0

1

After executing a STOP instruction, the system enters the STOP mode unconditionally.
All peripheral circuits are placed in the same initial state as when the system is reset, then they stop
operating.
The mode can be released only by the reset signal (RESET). After the mode is released, the program starts
at address 0H.

When a STOP instruction is executed with the POB1 pin being at low level, the system enters the STOP
mode. The mode can be released by the reset signal (RESET). When the mode is released, the program
starts at address 0H. This mode can also be released when a high-level signal is applied to the POB1 pin. In
this case, the program starts with the instruction immediately after the STOP instruction.
When a STOP instruction is executed with the POB1 pin being at high level, the instruction is ignored
(regarded as a NOP instruction) and the system does not enter the STOP mode.

★

★

Oscillation disabled

000H

Previous data is retained.

All bits are set to 0.

Previous data is retained.
(All pins are placed in input mode.)

HALT instruction: Oscillation continued
STOP instruction: Oscillation disabled

Address following a HALT or STOP instruc-
tion is indicated.

Previous data is retained.

Previous data is retained.

Previous data is retained.
(Input/output mode of pins is also retained.)

Clock generator

Program counter

Data memory (00H to 0FH)

Program status word (PSWORD)

Port register (71H to 73H)

Hardware HALT or STOP 0001B instruction STOP 0000B instruction

HALT
instruction

RESET

Clock

Operation mode

Oscillation

NoteOperation mode HALT mode

7.5 TIMING FOR RELEASING THE STANDBY MODES

Fig. 7-1 Releasing the HALT Mode by RESET Input

When the RESET signal is applied to release the HALT mode, the RESET input makes a transition from low

to high, then an operation mode is entered.

Note The HALT mode remains effective in this period, waiting for the operation mode.

An operation starts after eight clock pulses on the XIN pin are counted..

37

µPD17104

Fig. 7-2 Releasing the HALT Mode by High-Level Input to the P0B0 Pin

Fig. 7-3 Releasing the STOP Mode by RESET Input

As soon as the RESET input makes a transition from high to low in the STOP mode, the system clock starts

generating clock pulses.

Note The HALT mode remains effective in this period, waiting for the generation of clock pulses to settle.

An operation starts after eight clock pulses on the XIN pin are counted.

Fig. 7-4 Releasing the STOP Mode by High-Level Input to the P0B1 Pin

Note The HALT mode remains effective in this period, waiting for the generation of clock pulses to settle.

An operation starts after eight clock pulses on the XIN pin are counted.

STOP
instruction

Operation mode

Oscillation

Operation mode

Clock
Oscillation

Note

Oscillation
stopped

STOP
instruction

Standby release
signal (P0B)1

STOP
instruction

Operation mode

Oscillation

Operation mode HALT modeSTOP mode

RESET

Clock
Oscillation

Note

Oscillation
stopped

HALT
instruction

Clock

Operation mode

Oscillation

Operation mode HALT mode

Standby release
signal (P0B)0

38

µPD17104

8. RESET FUNCTION

8.1 SYSTEM RESET

A low-level signal, applied to the RESET pin, resets the system, then the hardware is initialized.

The system clock oscillates as long as the power supply voltage is supplied, even if a low-level signal is

applied to the RESET pin.

A low to high transition on the RESET pin releases the reset status and causes the system to enter the

operating mode once the 8-clock oscillation settling wait time has elapsed.

Table 8-1 Hardware Status after Reset

Note The hardware is initialized when the STOP 0000B instruction is executed.

Input/output mode

Output latch

Hardware Reset in standby modeNote

Program counter

Data memory (00H to 0FH)

Program status word (PSWORD)

Port

000H

Undefined

All bits are set to 0.

Input

Undefined

• Reset immediately after power on

• Reset during operation

000H

Data existing before reset is retained.

All bits are set to 0.

Input

Data existing before reset is retained.

★

39

µPD17104

9. RESERVED WORDS USED IN ASSEMBLY LANGUAGE

9.1 MASK-OPTION PSEUDO INSTRUCTIONS

Source programs in the assembly language for the µPD17104 must include mask-option pseudo instruc-

tions to select pin options.

To do this, be sure to catalog the D17104.OPT file in AS17104 (device file for the µPD17104) into the current

directory beforehand.

Specify mask options for the following pins:

• P0B0

• P0B1

• P0B2

• P0B3

• RESET

9.1.1 OPTION and ENDOP Pseudo Instructions

The part starting with the OPTION pseudo instruction and ending with the ENDOP pseudo instruction is

referred to as a mask-option definition block. The coding format of the mask-option definition block is as

follows.

Only the two pseudo instructions listed in Table 9-1 can be coded in the block.

Format:

Symbol Mnemonic Operand Comment

[label:] OPTION [;comment]
•
•
•

ENDOP

9.1.2 Mask-Option Definition Pseudo Instructions

Table 9-1 lists the pseudo instructions to define a mask option for each pin.

Table 9-1 Mask-Option Definition Pseudo Instructions

The coding format of OPTP0B is as follows. To define the mask option, specify P0B3 (first operand), P0B2,

P0B1, and P0B0 in the operand field.

Format:

Symbol Mnemonic Operand Comment

[label:] OPTP0B (P0B3),(P0B2),(P0B1),(P0B0) [;comment]

Number of

operands

Mask-option pseudo
instruction

OperandPin

P0BPLUP (pull-up resistor provided)

OPEN (no pull-up resistor provided)

RESPLUP (pull-up resistor provided)

OPEN (no pull-up resistor provided)

P0B3 -

P0B0

RESET

OPTP0B

OPTRES

4

1

40

µPD17104

The coding format of OPTRES is as follows.

Format:

Symbol Mnemonic Operand Comment

[label:] OPTRES (RESET) [;comment]

Example The following mask options are set in a µPD17104 source file to be assembled:

P0B3: Pull-up, P0B2: Pull-up, P0B1: Open, P0B0: Open

RESET: Pull-up

•
•
•

;17104

 Setting mask options: OPTION

OPTP0B P0BPLUP, P0BPLUP, OPEN, OPEN

OPTRES RESPLUP

ENDOP
•
•
•

41

µPD17104

9.2 RESERVED SYMBOLS

Table 9-2 lists the reserved symbols defined in the µPD17104 device file (AS17104).

Table 9-2 Reserved Symbols

R/W: Read/write

0.70H.0

0.70H.1

0.70H.2

0.70H.3

0.71H.0

0.71H.1

0.71H.2

0.71H.3

0.72H.0

0.72H.1

0.72H.2

0.72H.3

0.73H.0

0.73H.1

0.73H.2

0.73H.3

0.7EH.0

0.7FH

0.7FH.1

0.7FH.2

0.7FH.3

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

MEM

FLG

FLG

FLG

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Name ValueAttribute R/W Description

Bit 0 of port 0A

Bit 1 of port 0A

Bit 2 of port 0A

Bit 3 of port 0A

Bit 0 of port 0B

Bit 1 of port 0B

Bit 2 of port 0B

Bit 3 of port 0B

Bit 0 of port 0C

Bit 1 of port 0C

Bit 2 of port 0C

Bit 3 of port 0C

Bit 0 of port 0D

Bit 1 of port 0D

Bit 2 of port 0D

Bit 3 of port 0D

BCD arithmetic flag

Program status word

Zero flag

Carry flag

Compare flag

P0A0

P0A1

P0A2

P0A3

P0B0

P0B1

P0B2

P0B3

P0C0

P0C1

P0C2

P0C3

P0D0

P0D1

P0D2

P0D3

BCD

PSW

Z

CY

CMP

42

µPD17104

10. INSTRUCTION SET

10.1 INSTRUCTION SET LIST

HEX

0

1

2

3

4

5

6

8

9

A

B

C

D

E

F

BIN

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

ADD r, m

SUB r, m

ADDC r, m

SUBC r, m

AND r, m

XOR r, m

OR r, m

RET

RETSK

RORC r

STOP s

HALT h

NOP

LD r, m

SKE m, #n4

SKNE m, #n4

BR addr

b14-b11

b15

0 1 1 1 7

ADD m, #n4

SUB m, #n4

ADDC m, #n4

SUBC m, #n4

AND m, #n4

XOR m, #n4

OR m, #n4

ST m, r

SKGE m, #n4

SKLT m, #n4

CALL addr

MOV m, #n4

SKT m, #n

SKF m, #n

0 1

43

µPD17104

10.2 INSTRUCTIONS

Legend

ASR : Address stack register pointed to by the stack pointer

addr: Program memory address (11 bits, high-order two bits are always set to 0)

CMP: Compare flag

CY : Carry flag

h : Halt release condition

m : Data memory address specified by mR or mC

mR: Data memory row address (high order)

mC: Data memory column address (low order)

n : Bit position (4 bits)

n4 : Immediate data (4 bits)

PC : Program counter

r : General register column address

SP : Stack pointer

s : Stop release condition

(×) : Contents addressed by ×

44

µPD17104

Machine code

Op code Operand
Operand Operation

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

mC

0111

mC

mC

mC

r

n4

r

n4

r

n4

r

n4

r

n4

r

n4

r

n4

n

n

n4

n4

n4

n4

r

r

r

n4

Instruction
set

Mne-
monic

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

mR

000

mR

mR

mR

00000

10000

00010

10010

00001

10001

00011

10011

00110

10110

00100

10100

00101

10101

11110

11111

01001

01011

11001

11011

00111

01000

11000

11101

(r) ← (r) + (m)

(m) ← (m) + n4

(r) ← (r) + (m) + CY

(m) ← (m) + n4 + CY

(r) ← (r) - (m)

(m) ← (m) - n4

(r) ← (r) - (m) - CY

(m) ← (m) - n4 - CY

(r) ← (r) ∨ (m)

(m) ← (m) ∨ n4

(r) ← (r) ∧ (m)

(m) ← (m) ∧ n4

(r) ← (r) ∨ (m)

(m) ← (m) ∨ n4

CMP ← 0, if (m) ∧ n = n, then skip

CMP ← 0, if (m) ∧ n = 0, then skip

(m) - n4, skip if zero

(m) - n4, skip if not zero

(m) - n4, skip if not borrow

(m) - n4, skip if borrow

 CY → (r)b3 → (r)b2 → (r)b1 → (r)b0

(r) ← (m)

(m) ← (r)

(m) ← n4

r,m

m,#n4

r,m

m,#n4

r,m

m,#n4

r,m

m,#n4

r,m

m,#n4

r,m

m,#n4

r,m

m,#n4

m,#n

m,#n

m,#n4

m,#n4

m,#n4

m,#n4

r

r,m

m,r

m,#n4

ADD

ADDC

SUB

SUBC

OR

AND

XOR

SKT

SKF

SKE

SKNE

SKGE

SKLT

RORC

LD

ST

MOV

Add

Subtract

Logical

operation

Test

Compare

Rotation

Transfer

01100

11100

00111

00111

00111

00111

00111

addr

addr

s

h

PC10-0 ← addr

SP ← SP - 1, ASR ← PC, PC10-0 ← addr

PC ← ASR, SP ← SP + 1

PC ← ASR, SP ← SP + 1 and skip

STOP

HALT

No operation

Branch

Subroutine

Others

addr

1110

1110

1111

1111

1111

0000

0000

s

h

0000

000

001

010

011

100

BR

CALL

RET

RETSK

STOP

HALT

NOP

addr

45

µPD17104

10.3 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS

Legend

flag n : FLG symbol

< > : Characters enclosed in < > can be omitted.

OperationMnemonic Operand n

1 ≤ n ≤ 4

1 ≤ n ≤ 4

1 ≤ n ≤ 4

1 ≤ n ≤ 4

1 ≤ n ≤ 4

1 ≤ n ≤ 4

flag 1, ...flag n

flag 1, ...flag n

flag 1, ...flag n

flag 1, ...flag n

flag 1, ...flag n

<NOT> flag 1,
... <<NOT> flag n>

if (flag 1) - (flag n) = all "1", then skip

if (flag 1) - (flag n) = all "0", then skip

(flag 1) - (flag n) ← 1
(flag 1) - (flag n) ← 0
if (flag n) = "0", then (flag n) ← 1
if (flag n) = "1", then (flag n) ← 0
if description = NOT flag n, then (flag n) ← 0
if description = flag n, then (flag n) ← 1

SKTn

SKFn

SETn

CLRn

NOTn

INITFLG

B
u

ilt
-i

n
 m

ac
ro

★

46

µPD17104

-0.3 to +7.0

-0.3 to VDD + 0.3

-0.3 to VDD + 0.3

-0.3 to +11

-0.3 to VDD + 0.3

-0.3 to VDD + 0.3

-0.3 to +11

-5

-15

30

100

-40 to +85

-65 to +150

400

250

Rated value

V

V

V

V

V

V

V

mA

mA

mA

mA

°C

°C

mW

UnitConditions

Supply voltage

Input voltage

Output voltage

High-level output current

Low-level output current

Operating temperature

Storage temperature

Allowable dissipation

Parameter Symbol

P0A, P0C, P0D, RESET

P0B

P0A, P0C, P0D

P0B

Each of P0A, P0C , and P0D

Total of all pins

Each of P0A, P0B, P0C, and P0D

Total of all pins

Ta = 85 °C 22-pin plastic shrink DIP

24-pin plastic SOP

11. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (Ta = 25 ˚C)

Note 1

Note 2

Note 1

Note 2

Notes 1. When a built-in pull-up resistor is connected with a mask option

2. When a built-in pull-up resistor is not connected with a mask option

Caution Absolute maximum ratings are rated values beyond which some physical damages may be

caused to the product; if any of the parameters in the table above exceeds its rated value even

for a moment, the quality of the product may deteriorate. Be sure to use the product within the

rated values.

CAPACITANCE (Ta = 25 ˚C, VDD = 0 V)

I/O: Input/output

VDD

VI

VO

IOH

IOL

Topt

Tstg

Pd

CIN

CIO

Input capacitance

I/O capacitance

Parameter Symbol Conditions Min. UnitMax.Typ.

f = 1 MHz

0 V for pins other than pins to be measured

15

15

pF

pF

47

µPD17104

DC CHARACTERISTICS (Ta = -40 to +85 ˚C, VDD = 2.7 to 6.0 V)

Notes 1. When a built-in pull-up resistor is connected with a mask option

2. When a built-in pull-up resistor is not connected with a mask option

3. This current excludes the current which flows through the built-in pull-up resistors.

VIH1

VIH2

VIH3

VIH4

VIL1

VIL2

VIL3

VOH1

VOH2

VOL1

VOL2

ILIH1

ILIH2

ILIH3

ILIL1

ILIL2

ILOH1

ILOH2

ILOH3

ILOL

RRES

RP0B

IDD1

IDD2

IDD3

High-level input volt-

age

Low-level input volt-

age

High-level output

voltage

Low-level output volt-

age

High-level input leak-

age current

Low-level input leak-

age current

High-level output

leakage current

Low-level output leak-

age current

Built-in pull-up resis-

tor for pin RESET

Built-in pull-up resis-

tor for pin P0B

Power supply

currentNote 3

Parameter Symbol Conditions Min. UnitMax.Typ.

P0A, P0C, P0D

RESET

P0B Note 1

Note 2

P0A, P0C, P0D

RESET

P0B

P0A, P0C, P0D

VDD = 4.5 to 6.0 V, IOH = -2 mA

P0A, P0C, P0D

IOH = -200 µA

P0A, P0B, P0C, P0D

VDD = 4.5 to 6.0 V, IOL = 15 mA

P0A, P0B, P0C, P0D

IOL = 600 µA

P0A, P0C, P0D, VIN = VDD

P0B VIN = VDDNote 1

VIN = 9 VNote 2

P0A, P0C, P0D, VIN = 0 V

P0B, VIN = 0 V

P0A, P0C, P0D, VOUT = VDD

P0B VOUT = VDDNote 1

VOUT = 9 VNote 2

P0A, P0B, P0C, P0D, VOUT = 0 V

VDD = 5 V ±10 %, fX = 8 MHz

VDD = 3 V ±10 %, fX = 2 MHz

VDD = 5 V ±10 %, fX = 8 MHz

VDD = 3 V ±10 %, fX = 2 MHz

VDD = 5 V ±10 %

VDD = 3 V ±10 %

0.7VDD

0.8VDD

0.8VDD

0.8VDD

0

0

0

VDD – 2.0

VDD – 1.0

VDD

VDD

VDD

9

0.3VDD

0.2VDD

0.2VDD

2.0

0.5

5

5

10

-5

-5

5

5

10

-5

95

30

4.5

750

3.0

600

10

5

V

V

V

V

V

V

V

V

V

V

V

µA

µA

µA

µA

µA

µA

µA

µA

µA

kΩ

kΩ

mA

µA

mA

µA

µA

µA

47

15

1.5

250

1.0

200

0.1

0.1

20

5

Operation

mode

HALT mode

STOP mod

48

µPD17104

CHARACTERISTICS OF DATA MEMORY FOR HOLDING DATA ON LOW SUPPLY VOLTAGE IN THE STOP MODE

(Ta = -40 to +85 ˚C)

AC CHARACTERISTICS (Ta = -40 to +85 ˚C, VDD = 2.7 to 6.0 V)

Remark tCY = 16/fX (fX: frequency of the system clock oscillator)

VDDDR

IDDDR

Data hold supply volt-

age

Data hold supply

current

Parameter Symbol Conditions Min. UnitMax.Typ.

VDDDR = 2.0 V

2.0 6.0

5.0

V

µA0.1

tCY

tPBH

tPBL

tRSH

tRSL

CPU clock cycle time

(instruction execution

time)

High/low level width

on P0B0 and P0B1

High/low level width

on RESET

Parameter Symbol Conditions Min. UnitMax.Typ.

VDD = 4.5 to 6.0 V 1.9

7.6

10

10

33

33

µs

µs

µs

µs

49

µPD17104

SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 ˚C, VDD = 2.7 to 6.0 V)

RECOMMENDED CERAMIC RESONATORS

Example of connection

Recom-
mended
constant

Ceramic resonator 0.49

0.49

0.49

2.04

5.00

8.16

MHz

MHz

MHz

Resonator Conditions Min. UnitMax.Typ.Parameter

VDD = 2.7 to 6.0 V

VDD = 4.0 to 6.0 V

VDD = 4.5 to 6.0 V

Oscillator fre-

quency

Max.
Manufacturer

Min.C2 [pF]C1 [pF]
Part number

Oscillation voltage range [V]Recommended constants

Max.Rd [kΩ] Min.C2 [pF]C1 [pF]
Part number

6.0

6.0

6.0

6.0

6.0

6.0

6.0

6.8

0

0

0

8.2

0

0

2.7

2.7

4.0

4.5

2.7

4.0

4.5

100

30

30

30

47

27

27

100

30

30

30

47

27

27

Murata

Toko

CSB500E

CSA2.00MG

CSA4.00MG

CSA8.00MTZ

CRK500

CRHB4.00M

CRHB8.00M

INX OUTX

Rd

C2C1

50

µPD17104

12. CHARACTERISTIC CURVES (REFERENCE)

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

0X

7X

Row
address

Address

Bit
symbol

Port register System register

70H 71H 72H 73H

P
0
B
2

P
0
B
1

P
0
B
0

P
0
C
3

P
0
C
2

P
0
C
1

P
0
C
0

P
0
D
3

P
0
D
2

P
0
D
1

P
0
D
0

P
0
A
3

P
0
A
2

P
0
A
0

P
0
B
3

P
0
A
1

51

µPD17104

IOL vs. VOL

(T = 25 °C)a

V = 5 VDD

V = 3 VDD

30

25

20

15

10

5

0
0 1 2 3 4 5 6

Low-level output voltage V [V]OL

Lo
w

-le
ve

l o
ut

pu
t

cu
rr

en
t

 I

 [m
A

]
O

L

IOH vs. (VDD – VOH)

(T = 25 °C)a

0 1 2 3 4 5 6

V – V [V]DD OH

H
ig

h-
le

ve
l o

ut
pu

t
cu

rr
en

t
 I

 [m

A
]

O
H

V = 5 VDD

V = 3 VDD
–5

–4

–3

–2

–1

0

Caution The maximum absolute rating is 30 mA per pin.

Caution The maximum absolute rating is -5 mA per pin.

52

µPD17104

13. PACKAGE DRAWINGS

S22C-70-300B

53

µPD17104

detail of lead end

BE L

K

F
G I

H

J

A

1 12

1324

3°
+

7°
–3

°

MMD

N

P24GM-50-300B-3

ITEM MILLIMETERS INCHES

A

B

C

D

E

F

G

H

I

J

K

15.54 MAX.

1.27 (T.P.)

1.8 MAX.

1.55

7.7±0.3

0.78 MAX.

0.612 MAX.

0.004±0.004

0.071 MAX.

0.303±0.012

0.220

0.031 MAX.

NOTE

L

M 0.12

0.6±0.2

1.1

5.6

0.005

0.024+0.008
–0.009

Each lead centerline is located within 0.12
mm (0.005 inch) of its true position (T.P.) at
maximum material condition.

0.043

0.061

0.050 (T.P.)

0.20+0.10
–0.05 0.008+0.004

–0.002

N 0.10 0.004

0.016+0.004
–0.0030.40

0.1±0.1

+0.10
–0.05

C

24 PIN PLASTIC SOP (300 mil)

54

µPD17104

55

µPD17104

56

µPD17104

14. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the µPD17104.

For details of the recommended soldering conditions, refer to our document SMD Surface Mount

Technology Manual (IEI-1207).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is

done under different conditions.

Table 14-1 Soldering Conditions for Surface-Mount Devices

µPD17104GS-×××: 24-pin plastic SOP (300 mil)

Caution Do not apply two or more different soldering methods to one chip (except for partial heating

method for terminal sections).

Table 14-2 Soldering Conditions for Through Hole Mount Devices

µPD17104CS-×××: 22-pin plastic shrink DIP (300 mil)

Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does

not come in contact with the main body of the package.

Recommended
conditions

Soldering process Soldering conditions

Infrared ray reflow

VPS

Wave soldering

Partial heating method

Peak package's surface temperature: 235 ˚C
Reflow time: 30 seconds or less (210 ˚C or more)
Maximum allowable number of reflow processes: 2
<Cautions>
(1) Do not start reflow-soldering the device if its temperature is

higher than the room temperature because of a previous reflow
soldering.

(2) Do not use water for flux cleaning before a second reflow
soldering.

Peak package's surface temperature: 215 ˚C
Reflow time: 40 seconds or less (200 ˚C or more)
Maximum allowable number of reflow processes: 2
<Cautions>
(1) Do not start reflow-soldering the device if its temperature is

higher than the room temperature because of a previous reflow
soldering.

(2) Do not use water for flux cleaning before a second reflow
soldering.

Solder temperature: 260 ˚C or less
Flow time: 10 seconds or less
Number of flow process: 1
Preheating temperature: 120 ˚C max. (measured on the package
surface)

Terminal temperature: 300 ˚C or less
Heat time: 3 seconds or less (for one side of a device)

IR35-00-2

VP15-00-2

WS60-00-1

–

★

Soldering process

Wave soldering

(Only for leads)

Partial heating method

Soldering conditions

Solder temperature: 260 °C or less

Flow time: 10 seconds or less

Terminal temperature: 300 °C or less

Heat time: 3 seconds or less (for each lead)

57

µPD17104

15. TINY MICROCONTROLLER FAMILY

Note A number in parentheses indicates the number of N-ch open-drain outputs. They can be connected

to internal pull-up resistors by specifying the mask option accordingly.

11

(3)

16

(4)
16

(4)

11

(3)
16

(4)

11

(3)

16

(4)

11

(3)

1K bytes (512 × 16 bits)

16 × 4 bits

Ceramic oscillation RC oscillation

2.7 to 6.0 V (at 2 MHz)

4.5 to 6.0 V (at 8 MHz)
2.5 to 6.0 V (at 250 kHz)

4.5 to 6.0 V (at 1 MHz)

1.5 to 3.6 V (at 200 kHz)1.8 to 3.6 V (at 2 MHz)

• 22-pin

shrink DIP

• 24-pin

SOP

µPD17P108

• 22-pin

shrink DIP

• 24-pin

SOP

µPD17P108

• 16-pin DIP

• 16-pin

SOP

µPD17P107

• 22-pin

shrink DIP

• 24-pin

SOP

µPD17P104

• 16-pin DIP

• 16-pin

SOP

µPD17P103

 Item µPD17103 µPD17104 µPD17108LµPD17107LµPD17108µPD17107µPD17104LµPD17103L

• 16-pin DIP

• 16-pin

SOP

µPD17P107

• 16-pin DIP

• 16-pin

SOP

 µPD17P103

ROM capacity

RAM capacity

Number of

input/output

port pinsNote

System clock

Power supply

voltage

Package

PROM version

• 22-pin

shrink DIP

• 24-pin

SOP

µPD17P104

58

µPD17104

APPENDIX DEVELOPMENT TOOLS

The following support tools are available for developing programs for the µPD17104.

Hardware

★

Name Description

The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators applicable to the 17K series.

The IE-17K and IE-17K-ET are connected to the PC-9800 series (host machine) or IBM PC/

ATTM through the RS-232-C interface. The EMU-17K is inserted into the extension slot of

the PC-9800 series (host machine).

Use the system evaluation board (SE board) corresponding to each product together with

one of these in-circuit emulators. SIMPLEHOSTTM, a man machine interface, implements

an advanced debug environment.

The EMU-17K also enables user to check the contents of the data memory in real time.

The SE-17104L is an SE board for the µPD17104, µPD17104L, or µPD17P104. It is used solely

for evaluating the system. It is also used for debugging in combination with the in-circuit

emulator.

The EP-17104CS is an emulation probe for the µPD17104, µPD17104L, µPD17P104, µPD17108,

µPD17108L, or µPD17P108.

The AF-9703, AF-9704, and AF-9706 are PROM writers for the µPD17P104. Use one of these

PROM writers with the program adapter, AF-9799, to program the µPD17P104.

The AF-9799 is a socket unit for the µPD17P103, µPD17P104, µPD17P107, and µPD17P08.

It is used with the AF-9703, AF-9704, or AF-9706.

In-circuit emulator

IE-17K

IE-17K-ETNote 1

EMU-17KNote 2

SE board

(SE-17104L)

Emulation probe

(EP-17104CS)

PROM Programmer

(AF-9703Note 3, AF-9704Note 3,

or AF-9706Note 3)

Programmer adapter

(AF-9799Note 3)

Notes 1. Low-end model, operating on an external power supply

2. The EMU-17K is a product of IC Co., Ltd. Contact IC Co., Ltd. (Tokyo, 03-3447-3793) for details.

3. The AF-9703, AF-9704, AF-9706, and AF-9799 are products of Ando Electric Co., Ltd. Contact Ando

Electric Co., Ltd. (Tokyo, 03-3733-1151) for details.

59

µPD17104

µS5A10AS17K

µS5A13AS17K

µS7B10AS17K

µS7B13AS17K

µS5A10AS17103
Note

µS5A13AS17103
Note

µS7B10AS17103
Note

µS7B13AS1703
Note

µS5A10IE17K

µS5A13IE17K

µS7B10IE17K

µS7B13IE17K

OS Part numberDescriptionName
Distribution

media
Host

machine

Software

AS17K is an assembler

applicable to the 17K series.

In developing µPD17104

programs, AS17K is used in

combination with a device file

(AS17104).

AS17104 is a device file for the

µPD17104 and µPD17P104.

It is used together with the

assembler (AS17K) which is

applicable to the 17K series.

SIMPLEHOST, running on the

WindowsTM, provides man-

machine-interface in develop-

ing programs by using a

personal computer and the

in-circuit emulator.

17K series

assembler

(AS17K)

Device file

(AS17104)

Support software

(SIMPLEHOST)

PC-9800

series

IBM

PC/AT

PC-9800

series

IBM

PC/AT

PC-9800

series

IBM

PC/AT

MS-DOSTM

PC DOS TM

MS-DOS

 PC DOS

5.25-inch,

2HD

3.5-inch,

2HD

5.25-inch,

2HC

3.5-inch,

2HC

5.25-inch,

2HD

3.5-inch,

2HD

5.25-inch,

2HC

3.5-inch,

2HC

5.25-inch,

2HD

3.5-inch,

2HD

5.25-inch,

2HC

3.5-inch,

2HC

MS-DOS

PC DOS

Windows

Note µS××××AS17103 indicates the AS17103, AS17104, AS17107, AS17108, AS17103L, AS17104L, AS17107L,

or AS17108L.

Remark The following table lists the versions of the operating systems described in the above table.

Note MS-DOS versions 5.00 and 5.00A

and PC DOS Ver. 5.0 are provided

with a task swap function. This

function, however, cannot be used

in these software packages.

OS

MS-DOS

PC DOS

Windows

Ver. 3.30 to Ver. 5.00ANote

Ver. 3.1 to Ver. 5.0Note

Ver. 3.0 to Ver. 3.1

Versions

★

★

★

60

µPD17104

Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged.

Strong static electricity may cause dielectric breakdown in gates. When transporting or

storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal

cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during

assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

$ CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an

intermediate-level input may be caused by noise. This allows current to flow in the CMOS

device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input

level. Since unused pins may function as output pins at unexpected times, each unused

pin should be separately connected to the VDD or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

% Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted

in molecules, the initial status cannot be determined in the manufacture process. NEC

has no responsibility for the output statuses of pins, input and output settings, and the

contents of registers at power on. However, NEC assures operation after reset and items

for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

61

µPD17104

[MEMO]

µPD17104

SIMPLEHOST is a trademark of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use of
such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear
reactor control systems and life support systems. If customers intend to use NEC devices for above applications
or they intend to use “Standard” quality grade NEC devices for applications not intended by NEC, please contact
our sales people in advance.
Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Ma-
chine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime
systems, etc.

M4 92. 6

	COVER
	1. PROGRAM COUNTER (PC)
	1.1 CONFIGURATION
	1.2 FUNCTIONS

	2. STACK
	3. PROGRAM MEMORY (ROM)
	4. DATA MEMORY (RAM)
	5. ALU BLOCK
	5.1 ALU BLOCK CONFIGURATION
	5.2 FUNCTIONS OF THE ALU BLOCK
	5.3 ARITHMETIC OPERATIONS
	5.4 LOGICAL OPERATIONS
	5.5 BIT EVALUATIONS
	5.6 COMPARISON EVALUATIONS
	5.7 ROTATIONS

	6. PORTS
	6.1 PORT 0A
	6.2 PORT 0B
	6.3 PORT 0C
	6.4 PORT 0D

	7. STANDBY FUNCTIONS
	7.1 HALT MODE
	7.2 STOP MODE
	7.3 STANDBY MODES
	7.4 HARDWARE STATUSES
	7.5 TIMING

	8. RESET FUNCTION
	9. RESERVED WORDS
	9.1 MASK- OPTION PSEUDO INSTRUCTIONS
	9.2 RESERVED SYMBOLS

	10. INSTRUCTION SET
	10.1 INSTRUCTION SET LIST
	10.2 INSTRUCTIONS
	10.3 ASSEMBLER

	11. ELECTRICAL CHARACTERISTICS
	12. CHARACTERISTIC CURVES
	13. PACKAGE DRAWINGS
	14. SOLDERING CONDITIONS
	15. TINY MICROCONTROLLER FAMILY
	APPENDIX

