
© 1994

USER'S MANUAL

µPD17145 SUB-SERIES
4 BIT SINGLE-CHIP MICRO CONTROLLER

µPD17145
µPD17147
µPD17149

µPD17P149

Document No. U10261EJ2V0UM00 (2nd edition)
(Previous No. IEU-1383)
Date Published December 1995 P
Printed in Japan

OVERVIEW

DATA MEMORY (RAM)

PIN FUNCTIONS

 REGISTER FILE (RF)

 COMPARISON OF FUNCTIONS OF µPD17145 SUB-SERIES, µPD17135A, AND µPD17137A

15

16

17

18

1

3

2

4

5

7

6

8

9

10

11

12

13

14

19

20

21

A

B

FREVISION HISTORY

EINSTRUCTION INDEX

DMASK ROM ORDERING PROCEDURE

DDEVELOPMENT TOOLS

 DEVELOPMENT OF THE µPD171xx SUB-SERIES

ASSEMBLER RESERVED WORDS

 INSTRUCTION SET

WRITING TO AND VERIFYING ONE-TIME PROM

 NOTES ON SYSTEM CLOCK OSCILLATOR CONFIGURATION

POC CIRCUIT (MASK OPTION)

 RESET

STANDBY FUNCTION

 INTERRUPT FUNCTIONS

PERIPHERAL HARDWARES

PORTS

ALU BOOK

 DATA BUFFER (DBF)

SYSTEM REGISTER (SYSREG)

GENERAL REGISTER (GR)

STACK

 PROGRAM COUNTER (PC)

PROGRAM MEMORY (ROM)

PC-DOS and PC/AT are a trademarks of IBM Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

SIMPLEHOST is a trademark of NEC Corporation.

Cautions on CMOS Devices

<1> Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged.

Strong static electricity may cause dielectric breakdown in gates. When transporting or storing

MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC

uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not

allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

<2> CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-

level input may be caused by noise. This allows current to flow in the CMOS device, resulting

in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused

pins may function as output pins at unexpected times, each unused pin should be separately

connected to the VDD or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

<3> Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in

molecules, the initial status cannot be determined in the manufacture process. NEC has no

responsibility for the output statuses of pins, input and output settings, and the contents of registers

at power on. However, NEC assures operation after reset and items for mode setting if they are

defined.

When you turn on a device having a reset function, be sure to reset the device first.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on
a customer designated “quality assurance program“ for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

M7 94.11

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without
governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country
other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

Major Changes

Page Description

Throughout The µPD17P149 has been developed.

p.110 Figure 13-1 has been modified.

p.116 Section 13.1.6 has been added.

p.117 Section 13.1.7 has been added.

p.139 Figure 13-21 has been changed.

p.163 Caution 2 for Table 15-1 has been modified.

p.170 Section 15.3.3 has been changed.

p.177 Section 17.3 has been added.

p.192 Note has been addded to Section 20.3 .

p.263 Appendix B has been modified.

p.271 Appendix F has been added.

The mark * shows major revised points.

PREFACE

Users:
This manual is for users who intend to learn the capabilities of the µPD17145 sub-series for application

program development.

Purpose:
This manual describes the functions of the µPD17145 sub-series. The purpose of this manual is to help

users generate a program.

Guidance:
Before using this manual, the user should have a general knowledge of the electronics, logical circuit, and

microcomputer fields.

• To understand the general functions of the µPD17145 sub-series:

Read the entire manual in the order of the table of contents.

• To check instructions if you know their mnemonics: See Appendix E .

• To check instructions when you don’t know their mnemonics, but you know their functions

roughly:

Check the mnemonics of the instructions in Section 20.3 , then check their functions in Section 20.5 .

• To check the electrical characteristics of the µPD17145 sub-series:

Refer to the separate data sheet.

Notation:
Data weight: Higher digits on the left side

Lower digits on the right side

Active low: xxx (Pins and signal names are overscored.)

Memory map address: Low-order address on the upper side

High-order address on the lower side

Note: Explanation of the indicated part of the text

Caution: Information requesting the user’s special attention

Remarks: Supplementary information

Numeric value: Binary: xxxx or xxxxB

Decimal: xxxx or xxxxD

Hexadecimal: xxxxH

In this manual, the product described is the µPD17149, which is one of the µPD17145 sub-series,

unless otherwise specified.

Related documents:
The following documents are provided for reference. The numbers listed in the table are document

numbers. Some related documents may be preliminary versions. Note that, however, what documents are

preliminary is not indicated in this document.

 Product
µPD17145 µPD17147 µPD17149 µPD17P149

Document

Data Sheet IC-8793 [IC-3283] IC-8978 [IC-3505]

User's Manual The manual you are reading

IE-17K (Ver. 1.6) User's Manual EEU-929 [EEU-1467]

IE-17K-ET (Ver. 1.6) User's Manual EEU-931 [EEU-1466]

SIMPLEHOSTTM User's Manual EEU-723 [EEU-1336] (Tutorial)
EEU-724 [EEU-1337] (Reference)

AS17K (Ver. 1.11) User's Manual EEU-603 [EEU-1287]

Device File User's Manual EEU-949 [EEU-1486]

SE Board Preliminary User's Manual EEU-945 [EEU-1475]

Remark The numbers in brackets are English document numbers.

- i -

CONTENTS

CHAPTER 1 OVERVIEW ... 1

1.1 FUNCTIONS.. 2

1.2 ORDERING INFORMATION... 3

1.3 BLOCK DIAGRAM .. 4

1.4 PIN CONFIGURATION (TOP VIEW) ... 5

CHAPTER 2 PIN FUNCTIONS .. 7

2.1 EXPLANATION OF PIN FUNCTIONS ... 7

2.2 EQUIVALENT INPUT/OUTPUT CIRCUITS ... 10

2.3 CONNECTION OF UNUSED PINS .. 14

2.4 NOTES ON USE OF THE RESET AND P0F0/RLS PINS

(ONLY FOR NORMAL OPERATION MODE) .. 16

CHAPTER 3 PROGRAM MEMORY (ROM) .. 17

3.1 PROGRAM MEMORY CONFIGURATION ... 18

3.2 PROGRAM MEMORY USAGE... 19

3.3 TABLE REFERENCE.. 23

CHAPTER 4 PROGRAM COUNTER (PC) .. 27

4.1 PROGRAM COUNTER CONFIGURATION ... 27

4.2 PROGRAM COUNTER OPERATION .. 28

CHAPTER 5 STACK .. 33

5.1 STACK CONFIGURATION ... 33

5.2 FUNCTIONS OF THE STACK.. 33

5.3 ADDRESS STACK REGISTER (ASR) ... 34

5.4 INTERRUPT STACK REGISTER (INTSK) .. 34

5.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTER 35

5.6 STACK OPERATION .. 36

5.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS.......... 37

CHAPTER 6 DATA MEMORY (RAM) ... 39

6.1 DATA MEMORY CONFIGURATION .. 39

CHAPTER 7 GENERAL REGISTER (GR) .. 41

7.1 GENERAL REGISTER POINTER (RP) .. 41

- ii -

CHAPTER 8 SYSTEM REGISTER (SYSREG) ... 43

8.1 SYSTEM REGISTER CONFIGURATION .. 43

8.2 ADDRESS REGISTER (AR) ... 45

8.3 WINDOW REGISTER (WR) ... 47

8.4 BANK REGISTER (BANK) .. 47

8.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER

(MEMORY POINTER: MP) .. 48

8.6 GENERAL REGISTER POINTER (RP) .. 59

8.7 PROGRAM STATUS WORD (PSWORD) .. 59

8.8 WARNINGS CONCERNING USE OF THE SYSTEM REGISTER........................ 63

CHAPTER 9 REGISTER FILE (RF) .. 67

9.1 REGISTER FILE CONFIGURATION.. 67

9.2 FUNCTIONS OF THE REGISTER FILE .. 69

9.3 CONTROL REGISTER ... 71

9.4 WARNINGS CONCERNING USE OF THE REGISTER FILE 72

CHAPTER 10 DATA BUFFER (DBF) ... 75

10.1 DATA BUFFER CONFIGURATION.. 75

10.2 FUNCTIONS OF THE DATA BUFFER .. 76

CHAPTER 11 ALU BLOCK .. 81

11.1 ALU BLOCK CONFIGURATION... 81

11.2 FUNCTIONS OF THE ALU BLOCK ... 81

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN

4-BIT BINARY AND BCD) .. 88

11.4 LOGICAL OPERATIONS .. 90

11.5 BIT EVALUATIONS .. 91

11.6 COMPARISON EVALUATIONS ... 93

11.7 ROTATIONS.. 96

CHAPTER 12 PORTS ... 99

12.1 PORT 0A (P0A0, P0A1, P0A2, P0A3) ... 99

12.2 PORT 0B (P0B0, P0B1, P0B2, P0B3) ... 100

12.3 PORT 0C (P0C0/ADC0, P0C1/ADC1, P0C2/ADC2, P0C3/ADC3) 101

12.4 PORT 0D (P0D0/SCK, P0D1/SO, P0D2/SI, P0D3/TM1OUT) 102

12.5 PORT 0E (P0E0, P0E1, P0E2, P0E3) ... 103

12.6 PORT 0F (P0F0/RLS, P0F1/VREF) ... 104

12.7 PORT CONTROL REGISTER .. 104

- iii -

CHAPTER 13 PERIPHERAL HARDWARES .. 109

13.1 8-BIT TIMER COUNTER (TM0, TM1) ... 109

13.2 BASIC INTERVAL TIMER (BTM) ... 120

13.3 A/D CONVERTER ... 127

13.4 SERIAL INTERFACE (SIO) .. 140

CHAPTER 14 INTERRUPT FUNCTIONS ... 149

14.1 INTERRUPT SOURCES AND VECTOR ADDRESSES .. 150

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT 151

14.3 INTERRUPT SEQUENCE .. 157

CHAPTER 15 STANDBY FUNCTION .. 163

15.1 OVERVIEW OF THE STANDBY FUNCTION .. 163

15.2 HALT MODE ... 164

15.3 STOP MODE ... 168

CHAPTER 16 RESET .. 173

16.1 RESET FUNCTIONS .. 173

16.2 RESETTING .. 174

CHAPTER 17 POC CIRCUIT (MASK OPTION) ... 175

17.1 FUNCTIONS OF THE POC CIRCUIT .. 176

17.2 CONDITIONS UNDER WHICH THE POC CIRCUIT MAY BE USED 177

17.3 CAUTIONS FOR USING THE POC CIRCUIT ... 177

17.4 SUPPLY VOLTAGE CHARACTERISTIC CONSIDERATIONS AND

POC CIRCUIT SPECIFICATIONS ... 179

17.5 CHECKING THE POC CIRCUIT OPERATION STATUS EXTERNALLY 179

CHAPTER 18 NOTES ON SYSTEM CLOCK OSCILLATOR CONFIGURATION 181

CHAPTER 19 WRITING TO AND VERIFYING ONE-TIME PROM .. 183

19.1 DIFFERENCES BETWEEN MASK ROM PRODUCTS AND A ONE-TIME

PROM PRODUCT ... 184

19.2 PROGRAM MEMORY WRITE/VERIFY MODES ... 185

19.3 WRITING TO PROGRAM MEMORY ... 186

19.4 READING PROGRAM MEMORY ... 188

*

- iv -

CHAPTER 20 INSTRUCTION SET ... 189

20.1 OVERVIEW OF THE INSTRUCTION SET .. 189

20.2 LEGEND .. 191

20.3 LIST OF THE INSTRUCTION .. 192

20.4 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS 193

20.5 EXPLANATION OF THE MACRO INSTRUCTIONS ... 194

CHAPTER 21 ASSEMBLER RESERVED WORDS ... 249

21.1 MASK OPTION PSEUDO INSTRUCTIONS .. 249

21.2 RESERVED SYMBOLS .. 251

APPENDIX A DEVELOPMENT OF THE µPD171xx SUB-SERIES .. 261

APPENDIX B COMPARISON OF FUNCTIONS OF µPD17145 SUB-SERIES, µPD17135A, AND

µPD17137A .. 263

APPENDIX C DEVELOPMENT TOOLS ... 265

APPENDIX D MASK ROM ORDERING PROCEDURE ... 267

APPENDIX E INSTRUCTION INDEX ... 269

E.1 INSTRUCTION INDEX (BY FUNCTION) ... 269

E.2 INSTRUCTION INDEX (ALPHABETICAL ORDER)... 270

APPENDIX F REVISION HISTORY ... 271*

- v -

LIST OF FIGURES (1/3)

Figure No. Title Page

3-1 Program Memory Map .. 18

3-2 Example of a Machine Code of a BR addr Instruction .. 21

3-3 CALL addr Instruction ... 22

3-4 MOVT DBF, @AR Instruction .. 23

4-1 Program Counter .. 27

4-2 Value of the Program Counter After an Instruction Is Executed..................................... 28

4-3 Value in the Program Counter after Reset .. 28

4-4 Value in the Program Counter during Execution of a BR addr Instruction..................... 29

4-5 Value in the Program Counter during Execution of a BR @AR Instruction 29

4-6 Value in the Program Counter during Execution of a CALL addr Instruction 30

4-7 Value in the Program Counter during Execution of a CALL @AR Instruction 30

4-8 Value in the Program Counter during Execution of a RET, RETSK, or RETI

Instruction ... 31

5-1 Stack Configuration .. 33

6-1 Organization of Data Memory .. 39

7-1 General Register Pointer Configuration ... 41

8-1 Allocation of System Register in Data Memory ... 43

8-2 System Register Configuration .. 44

8-3 Address Register Configuration ... 45

8-4 Address Register Used as a Peripheral Hardware Register... 46

8-5 Window Register Configuration.. 47

8-6 Bank Register Configuration .. 47

8-7 Configuration of Index Register and Memory Pointer ... 49

8-8 Modification of Data Memory Addresses Using the Index Register and

Memory Pointer .. 49

8-9 Example of Operation When IXE = 0 and MPE = 0 .. 52

8-10 Example of Operation When IXE = 0 and MPE = 1 .. 54

8-11 Example of Operation When IXE = 1 and MPE = 0 .. 56

8-12 Example of Operation When IXE = 1 and MPE = 0 (Indirect Data Transfer Using the

General Register) ... 57

8-13 Example of Operation When IXE = 1 and MPE = 0 (Array Processing) 58

8-14 Program Status Word Configuration .. 59

- vi -

LIST OF FIGURES (2/3)

Figure No. Title Page

8-15 Outline of Functions of the Program Status Word .. 60

9-1 Register File Configuration ... 67

9-2 Relationship Between the Register File and Data Memory .. 68

9-3 Accessing the Register File Using the PEEK and POKE Instructions 70

10-1 Allocation of the Data Buffer .. 75

10-2 Data Buffer Configuration ... 76

10-3 Relationship between the Data Buffer and Peripheral Hardware 76

11-1 Configuration of the ALU .. 84

12-1 Input/Output Switching by Group I/O ... 104

12-2 Port Control Registers for Bit I/O ... 105

12-3 Register for Specifying the Incorporation of Pull-Up Resistors for

Group Pull-Up Ports ... 107

12-4 Register for Specifying the Incorporation of Pull-Up Resistors for the

Bit Pull-Up Port ... 108

13-1 Configuration of the 8-Bit Timer Counters ... 110

13-2 Timer 0 Mode Register ... 111

13-3 Timer 1 Mode Register ... 112

13-4 Setting the Count Value in a Modulo Register .. 114

13-5 Example of Reading 8-Bit Counter Count Values ... 115

13-6 Error that Occurs If the Count Register is Cleared to 0 When Counting 117

13-7 Error that Occurs When Counting is Resumed from a Point of Break. 118

13-8 Timer 1 Output Setting Register .. 119

13-9 Configuration of the Basic Interval Timer .. 121

13-10 BTM Mode Register .. 122

13-11 Watchdog Timer Mode Register .. 123

13-12 Timing Chart for the Watchdog Timer (When the WDTRES Flag is Used) 125

13-13 Block Diagram for the A/D Converter .. 127

13-14 A/D Converter Control Register ... 129

13-15 Setting a Value in the 8-Bit Data Register (ADCR) ... 131

13-16 Reading Values from the 8-Bit Data Register (ADCR) ... 132

13-17 Relationship between the Analog Input Voltage and Digital Conversion Result 133

- vii -

LIST OF FIGURES (3/3)

Figure No. Title Page

13-18 Using the Continuous Mode for the A/D Converter ... 135

13-19 Continuous Mode (A/D Conversion) Timing ... 136

13-20 Using the Single Mode for the A/D Converter ... 138

13-21 Single Mode (Compare Operation) Timing .. 139

13-22 Block Diagram of the Serial Interface .. 141

13-23 Timing of 8-Bit Transmission and Reception Mode

(Simultaneous Transmission and Reception) ... 142

13-24 Timing of the 8-Bit Reception Mode .. 143

13-25 Serial Interface Control Register .. 144

13-26 Setting a Value in the Shift Register .. 146

13-27 Reading a Value from the Shift Register ... 147

14-1 Interrupt Control Register ... 152

14-2 Interrupt Handling Procedure ... 158

14-3 Return from Interrupt Handling .. 159

14-4 Timing Diagram for the Acceptance of an Interrupt

(When INTE = 1, IPxxx = 1) ... 160

15-1 Releasing HALT Mode ... 165

15-2 Releasing STOP Mode ... 169

16-1 Reset Block Configuration .. 174

16-2 Resetting ... 174

17-1 Operation of the POC Circuit ... 176

17-2 Supply Voltage Variation .. 178

18-1 External Circuit of the System Clock Oscillator ... 181

18-2 Bad Examples of a System Clock Oscillator ... 182

19-1 Timing Chart for Program Memory Writing Steps ... 187

19-2 Timing Chart for Program Memory Reading Steps ... 188

21-1 System Register Configuration .. 252

21-2 Control Register Configuration ... 258

- viii -

LIST OF TABLES (1/2)

Table No. Title Page

2-1 Connection of Unused Pins. ... 14

3-1 Program Memory Configuration ... 17

3-2 Vector Address ... 20

3-3 Correspondence between the Destination Address and the Machine Code of a

BR addr Instruction ... 21

5-1 Operation of the Stack Pointer ... 35

5-2 Operation of the Stack Pointer during Execution of the CALL, RET,

or RETSK Instruction .. 36

5-3 Stack Operation during Execution of the MOVT DBF, @AR Instruction 36

5-4 Stack Operation during Interrupt Receipt and Execution of the RETI Instruction.......... 37

5-5 Stack Operation during Execution of the PUSH and POP Instructions.......................... 37

8-1 Instructions for Which Address Modification Is Performed ... 50

8-2 The Zero (Z) Flag and the Compare Flag (CMP) .. 61

10-1 Peripheral Hardware ... 77

11-1 List of ALU Instructions .. 82

11-2 Results of Arithmetic Operations Performed in 4-Bit Binary and BCD 86

11-3 Types of Arithmetic Operations .. 88

11-4 Logical Operations .. 90

11-5 Table of True Values for Logical Operations ... 90

11-6 Bit Evaluation Instructions .. 91

11-7 Comparison Evaluation Instructions .. 93

12-1 Writing into and Reading from the Port Register (0.70H) ... 99

12-2 Writing into and Reading from the Port Register (0.71H) ... 100

12-3 Switching the Port and A/D Converter ... 101

12-4 Register File Contents and Pin Functions ... 102

12-5 Data Read from the Port Register (0.73H) .. 103

12-6 Writing into and Reading from the Port Register (0.6EH) ... 103

- ix -

LIST OF TABLES (2/2)

Table No. Title Page

13-1 Data Conversion Time for the A/D Converter .. 137

13-2 Serial Clocks ... 140

13-3 Serial Interface Operation Mode .. 142

14-1 Interrupt Source Types ... 150

14-2 Interrupt Request Flag and Interrupt Enable Flag ... 151

15-1 Standby Mode Status ... 163

15-2 HALT Mode Release Conditions .. 164

15-3 Starting Address After HALT Mode is Released ... 164

15-4 STOP Mode Release Conditions ... 168

15-5 Starting Address After STOP Mode is Released .. 168

16-1 Hardware Statuses after Reset .. 173

19-1 Pins Used When Writing to Program Memory or Verifying Its Contents 183

19-2 Differences between Mask ROM Products and a One-Time PROM Product 184

19-3 Specification of Operating Modes .. 185

21-1 Mask Option Definition Pseudo Instructions .. 250

- x -

[MEMO]

1

CHAPTER 1 OVERVIEW

1

CHAPTER 1 OVERVIEW

The µPD17149 is a 4-bit single-chip microcontroller containing an 8-bit A/D converter (four channels), three

timers, and a serial interface. The µPD17149 can incorporate a POC circuit by using a mask option.

Since the µPD17P149 is a one-time PROM product, it is suited for program evaluation in developing a

system and for low-volume production. Its features are as follows.

• 17K architecture General registers; fixed, 16-bit instruction length

• Instruction execution time 2 µs (When operating at fX = 8 MHz with ceramic oscillation)

• Program memory (ROM) µPD17145 : 2K bytes (1024 x 16 bits)

µPD17147 : 4K bytes (2048 x 16 bits)

µPD17149 : 8K bytes (4096 x 16 bits)

µPD17P149: 8K bytes (4096 x 16 bits, one-time PROM)

• Data memory (RAM) 110 x 4 bits

• A/D converter 4 channels (8-bit resolution, successive approximation system)

• Timer function 3 channels (8-bit timer counter x 2 channels and basic interval timerNote)

• Serial interface 1 channel (three-wire synchronous mode)

• POC circuit (mask option)

• Supply voltage VDD = 4.5 to 5.5 V (at fX = 400 kHz to 8 MHz)

VDD = 2.7 to 5.5 V (at fX = 400 kHz to 2 MHz)

Note An internal reset signal can be generated by using a basic interval timer. (Watchdog timer function)

The µPD17149 is suited for control including analog voltage measurement, and for submicrocontrollers.

It can be used in the following units.

• Electric appliances

• Battery chargers

• Cameras

• Electronic measuring instruments

2

µPD17145 SUB-SERIES USER’S MANUAL

1.1 FUNCTIONS

Product
µPD17145 µPD17147 µPD17149 µPD17P149

Item

ROM Mask ROM One-time PROM

2K bytes 4K bytes 8K bytes (4096 x 16 bits)
(1024 x 16 bits) (2048 x 16 bits)

RAM 110 x 4 bits

Stack 5 address stacks, 3 interrupt stacks

Number of I/O ports 23 • 20 I/O ports
• 2 general input ports
• 1 sensor input port (INT pinNote)

A/D converter input 4 channels (shared with ports) with an absolute accuracy of ±1.5 LSB or less

Timer 3 channels • 2 channels for 8-bit timer counter (They can be used together as
one 16-bit timer.)

• 1 channel for 7-bit basic interval timer (can be used as a watchdog
timer)

Serial interface 1 channel (3-wire type)

Interrupt • Up to 3 levels of multiple hardware interrupt
• 1 external interrupt Detection of the rising edge

(INT) Detection of the falling edge Selectable
Detection of both edges

• 4 internal interrupts • Timer 0 (TM0)
• Timer 1 (TM1)
• Basic interval timer (BTM)
• Serial interface (SIO)

Execution time of an 2 µs (when operating at fX = 8 MHz with ceramic oscillation)
instruction

Standby function HALT/STOP

POC circuit Mask option None
(Can be used in an application circuit where VDD is 5 V ±10 %
and the clock frequency ranges from 400 kHz to 4 MHz)

Supply voltage VDD = 2.7 V to 5.5 V (at fX = 400 kHz to 2 MHz)
VDD = 4.5 V to 5.5 V (at fX = 400 kHz to 8 MHz)

Package 28-pin plastic shrink DIP (400 mil)
28-pin plastic SOP (375 mil)

Note The INT pin can be used as an input pin (sensor input) when the external interrupt function is not

used. The status of the pin is read with the INT flag of the control register, not with the port register.

Caution Although a PROM product is highly compatible with a mask ROM product in respect of

functions, they differ in internal ROM circuits and part of electrical characteristics. Before

changing the PROM product to the mask ROM product in an application system, evaluate

the system carefully using the mask ROM product.

*

*

*

3

CHAPTER 1 OVERVIEW

1.2 ORDERING INFORMATION

Part number Package Built-in ROM

µPD17145CT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17145GT-xxx 28-pin plastic SOP (375 mil) Mask ROM

µPD17147CT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17147GT-xxx 28-pin plastic SOP (375 mil) Mask ROM

µPD17149CT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM

µPD17149GT-xxx 28-pin plastic SOP (375 mil) Mask ROM

µPD17P149CT 28-pin plastic shrink DIP (400 mil) One-time PROM

µPD17P149GT 28-pin plastic SOP (375 mil) One-time PROM

Remark xxx is a ROM code number.

4

µPD17145 SUB-SERIES USER’S MANUAL

1.3 BLOCK DIAGRAM

Note The capacity of the stack depends on the product.

Remarks 1. The values in parentheses are valid only when the µPD17P149 is in program memory write/

verify mode.

2. The terms CMOS and N-ch in brackets indicate the output form of the port.

CMOS: CMOS push-pull output

N-ch : N-channel open-drain output

P0F1/ VREF

P0C3/ADC3/(MD3)
P0C2/ADC2/(MD2)
P0C1/ADC1/(MD1)
P0C0/ADC0/(MD0)

P0B3/(D7)
P0B2/(D6)
P0B1/(D5)
P0B0/(D4)

VDD

P0A3/(D3)
P0A2/(D2)
P0A1/(D1)
P0A0/(D0)

INT

P0E3

P0E2

P0E1

P0E0

XIN/(CLK)

XOUT

IRQTM0
IRQTM1
IRQBTM
IRQSIO

fx/2N CPU clock CLK stop

IRQBTM

Interrupt

controller

fX/2N

fX/2N

fX/2N

Basic interval timer

IRQTM1

Timer 1

IRQTM0

Timer 0

P0E

[N-ch]

RESET

GND

Instruction

decoder

Program counter

StackNote

ROM

ALU

System register

RAM

110 x 4 bits

RF

Clock

divider

System clock

generator

P0A

[CMOS]

P0B

[CMOS]

P0C

[CMOS]

A/D

convert-

er

P0F

P0D

[N-ch]

Serial

interface

IRQSIO

TM1

P0F0/RLS/(VPP)

P0D3/ TM1OUT
P0D2/SI

P0D1/SO
P0D0/SCK

1024 x 16 bits (µPD17145)

2048 x 16 bits (µPD17147)

4096 x 16 bits

(µPD17149, µPD17P149)

5

CHAPTER 1 OVERVIEW

1.4 PIN CONFIGURATION (TOP VIEW)

(1) Normal operation mode

28-pin plastic shrink DIP (400 mil)

28-pin plastic SOP (375 mil)

ADC0 - ADC3 : Analog input RESET : Reset input

GND : Ground RLS : Standby release signal input

INT : External interrupt input SCK : Serial clock input/output

P0A0 - P0A3 : Port 0A SI : Serial data input

P0B0 - P0B3 : Port 0B SO : Serial data output

P0C0 - P0C3 : Port 0C TM1OUT : Timer 1 output

P0D0 - P0D3 : Port 0D VDD : Power supply

P0E0 - P0E3 : Port 0E VREF : Reference voltage for the A/D converter

P0F0 and P0F1 : Port 0F XIN, XOUT: System clock oscillation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VDD

P0F1/ VREF

P0C3/ADC3

P0C2/ADC2

P0C1/ADC1

P0C0/ADC0

P0B3

P0B2

P0B1

P0B0

P0A3

P0A2

P0A1

P0A0

GND

XIN

XOUT

RESET

INT

P0F0/RLS

P0D0/SCK

P0D1/SO

P0D2/SI

P0D3/ TM1OUT

P0E0

P0E1

P0E2

P0E3

µ
P

D
17145C

T
-xxx

µ
P

D
17145G

T
-xxx

µ
P

D
17147C

T
-xxx

µ
P

D
17147G

T
-xxx

µ
P

D
17149C

T
-xxx

µ
P

D
17149G

T
-xxx

µ
P

D
17P

149C
T

µ

P
D

17P
149G

T

6

µPD17145 SUB-SERIES USER’S MANUAL

(2) Program memory write/verify mode

CLK : Input clock for address update MD0 - MD3: Operating mode selection input

D0 - D7: Data I/O VDD : Power supply

GND : Ground VPP : Programming power supply

Caution Symbols in parentheses denote processing for pins not used in the program memory write/

verify mode.

L : Connect these pins separately to the GND pin through pull-down resistors.

Open: Nothing should be connected on these pins.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VDD

(L)

MD3

MD2

MD1

MD0

D7

D6

D5

D4

D3

D2

D1

D0

GND

CLK

(Open)

(L)

(L)

VPPµ
P

D
17P

149C
T

µ

P
D

17P
149G

T
(L)

7

CHAPTER 2 PIN FUNCTION

CHAPTER 2 PIN FUNCTIONS

2.1 EXPLANATION OF PIN FUNCTIONS

2.1.1 Normal Operating Mode

Pin No. Symbol Function Output Upon reset

1 VDD Power supply – –

2 P0F1/VREF Port 0F. The reference voltage is supplied to the A/D Input Input
converter through this pin. (P0F1)

• Pull-up resistor incorporation specifiable with the mask
optionNote

• P0F1
• Bit 1 of 2-bit input port P0F

• VREF

• Reference voltage input for the A/D converter

3 - 6 P0C3/ADC3 - Port 0C. Analog voltage is supplied to the A/D CMOS Input
P0C0/ADC0 converter through these pins. push-pull (P0C)

• P0C3 - P0C0
• 4-bit input/output port
• Input/output setting allowed in units of 1 bit

• ADC3 - ADC0
• Analog input for the A/D converter

7 P0B3 Port 0B CMOS Input
8 P0B2 • 4-bit input/output port push-pull
9 P0B1 • Input/output setting allowed in units of 4 bits
10 P0B0 • Pull-up resistor incorporation specifiable by software

in units of 4 bits.

11 P0A3 Port 0A CMOS Input
12 P0A2 • 4-bit input/output port push-pull
13 P0A1 • Input/output setting allowed in units of 4 bits
14 P0A0 • Pull-up resistor incorporation specifiable by software

in units of 4 bits.

15 P0E3 Port 0E N-ch Input
16 P0E2 • 4-bit input/output port open drain
17 P0E1 • Input/output setting allowed in units of 4 bits
18 P0E0 • Pull-up resistor incorporation specifiable by software

in units of 4 bits.

Note For the µPD17P149, a pull-up resistor with the mask option is not incorporated.

2

*

8

µPD17145 SUB-SERIES USER’S MANUAL

Pin No. Symbol Function Output Upon reset

19 P0D3/TM1OUT Pin for port 0D, timer 1 output, serial data input, N-ch Input
serial data output, and serial clock input/output open drain

• Pull-up resistor incorporation specifiable by software
in units of 1 bit

• P0D3 - P0D0
• 4-bit input/output port
• Input/output setting allowed in units of 1 bit

• TM1OUT
• Timer 1 output

20 P0D2/SI • SI
• Serial data input

21 P0D1/SO • SO
• Serial data output

22 P0D0/SCK • SCK
• Serial clock input/output

23 P0F0/RLS Pin for port 0F and input for standby mode release Input Input
signal

• Pull-up resistor incorporation specifiable with the
mask optionNote

• P0F0
• Bit 0 of 2-bit input port P0F

• RLS
• Input for standby mode release signal

24 INT Input for an external interrupt request signal and Input Input
standby mode release signal.
• Pull-up resistor incorporation specifiable with the

mask optionNote

25 RESET System reset input pin Input Input
• Pull up resistor incorporation specifiable with the

mask optionNote

26 XOUT For system clock oscillation – –
27 XIN The ceramic resonator is connected between XIN and

XOUT.

28 GND Ground – –

Note For the µPD17P149, a pull-up resistor is not incorporated with the mask option.*

9

CHAPTER 2 PIN FUNCTION

2.1.2 Program Memory Write/Verify Mode (Only for the µPD17P149)

Pin No. Pin name Function Input/output

1 VDD Positive power supply pin. –
+6 V is applied to this pin when writing to program memory or
verifying its contents.

3 to 6 MD3 to MD0 Input pins that select an operation mode when writing to program Input
memory or verifying its contents

7 to 14 D7 to D0 Input/output pins for 8-bit data used when writing to program Input/output
memory or verifying its contents

23 VPP Voltage (+12.5 V) is applied to this pin when writing to program –
memory or verifying its contents.

27 CLK Input pin for address update clocks used when writing to program Input
memory or verifying its contents

28 GND Ground –

1 0

µPD17145 SUB-SERIES USER’S MANUAL

2.2 EQUIVALENT INPUT/OUTPUT CIRCUITS

Below are simplified diagrams of the input/output circuits for each pin.

(1) P0A0 - P0A3, P0B0 - P0B3

Data
P-ch

N-chOutput

disable

Output

latch

Selector

VDD

Pull-up

flag

Input buffer

P-ch

VDD

1 1

CHAPTER 2 PIN FUNCTION

(2) P0C0/ADC0 - P0C3/ADC3

(3) P0D3/TM1OUT, P0D1/SO

Data

VDD

P-ch

N-chOutput

disable

Output

latch

Selector

Input buffer

A/D

converter

Input

disable

Data

Output
disable

Output
latch

Pull-up flag

N-ch

P-ch

VDD

Input buffer

Selector

1 2

µPD17145 SUB-SERIES USER’S MANUAL

(4) P0D2/SI, P0D0/SCK

(5) P0E0 - P0E3

Output latchData Output latch

Output

disable

P-ch

VDD

�Pull-up flag

N-ch

Input buffer

Selector

Output latchData

Output

disable

P-ch

VDD

N-ch

Input buffer

Pull-up

flag

Selector

1 3

CHAPTER 2 PIN FUNCTION

(6) P0F0/RLS

(7) P0F1/VREF

(8) RESET, INT

Note For the µPD17P149, a pull-up resistor is not incorporated with the mask option.

VDD

Mask optionInput buffer

Standby release

Note

*

Input buffer

Mask option

P-ch

A/D select

A/D end
STOP mode

VREF

VDD

Note

Input buffer

Mask option

VDD

Note

*

1 4

µPD17145 SUB-SERIES USER’S MANUAL

2.3 CONNECTION OF UNUSED PINS

Connect unused pins as follows:

Table 2-1. Connection of Unused Pins

Conditions and handling
 Pin

Internal External

Port Input P0A, P0B, P0D, Pull-up resistors that can be specified Leave open.
mode P0E by software are incorporated.

P0C – Connect to VDD through pull-up
resistors. Or, connect to ground
through pull-down resistors.Note 1

P0F1 Pull-up resistors that can be specified with Connect directly to VDD or
the mask option are not incorporated. ground.

Pull-up resistors that can be specified Leave open.
with the mask option are incorporated.

P0F0Note 2 Pull-up resistors that can be specified with Connect directly to ground.
the mask option are not incorporated.

Output P0A, P0B, P0C – Leave open.
mode (CMOS ports)

P0D (N-ch open- Outputs low level.
drain port)

P0E (N-ch open- Outputs low level without pull-up
drain port) resistors that can be specified by

software.

Outputs high level with pull-up resistors
that can be specified by software.

External interrupt (INT) Pull-up resistors that can be specified Connect directly to VDD or
with the mask option are not ground.
incorporated.

Pull-up resistors that can be specified Leave open.
with the mask option are incorporated.

RESETNote 3 Pull-up resistors that can be specified Connect directly to VDD.
(When use only internal POC with the mask option are not
circuit) incorporated.

Pull-up resistors that can be specified
with the mask option are incorporated.

*

1 5

CHAPTER 2 PIN FUNCTION

Notes 1. When a pin is pulled up to VDD or pulled down to ground outside the chip, take the driving capacity

and maximum current consumption of a port into consideration. When using high-resistance pull-

up or pull-down resistors, apply appropriate countermeasures to ensure that noise is not attracted

by the resistors. Although the optimum pull-up or pull-down resistor varies with the application

circuit, in general, a resistor of 10 to 100 kilohms is suitable.

2. Since the P0F0/RLS pin is also used for setting the test mode, connect it directly to ground without

incorporating a pull-up resistor that can be specified with the mask option, when the pin is not

used.

3. When designing an application circuit which requires high reliability, be sure to design a circuit

to which an external RESET signal can be input. Since the RESET pin is also used for setting

the test mode, connect it to VDD directly when not used.

Caution To fix the I/O mode, pull-up resistors that can be specified with the software, and output

level of a pin, it is recommended that they should be specified repeatedly within a loop

in a program.

Remark For the µPD17P149, a pull-up resistor and POC circuit are not incorporated with the mask option.

1 6

µPD17145 SUB-SERIES USER’S MANUAL

VDD

RESET, P0F0/RLS

VDD

VDD

VDD

Diode with
low VF

RESET, P0F0/RLS

2.4 NOTES ON USE OF THE RESET AND P0F0/RLS PINS (ONLY FOR NORMAL OPERATION MODE)

The RESET and P0F0/RLS pins have the test mode selecting function for testing the internal operation of

the µPD17149 (IC test), besides the functions shown in Section 2.1 .

Applying a voltage exceeding VDD to the RESET and/or P0F0 pin causes the µPD17149 to enter the test

mode. When noise exceeding VDD comes in during normal operation, the device is switched to the test mode.

For example, if the wiring from the RESET or P0F0/RLS pin is too long, noise may be induced on the wiring,

causing this mode switching.

When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If

noise yet arises, use an external part to suppress it as shown below.

• Connect a diode with low VF between • Connect a capacitor between

the pin and VDD. the pin and VDD.

1 7

CHAPTER 3 PROGRAM MEMORY (ROM)

CHAPTER 3 PROGRAM MEMORY (ROM)

Table 3-1 lists the program memory configuration for the µPD17145, µPD17147, µPD17149, and

µPD17P149.

Table 3-1. Program Memory Configuration

Product Program memory capacity Address range

µPD17145 2K bytes (1024 x 16 bits) 0000H - 03FFH

µPD17147 4K bytes (2048 x 16 bits) 0000H - 07FFH

µPD17149 8K bytes (4096 x 16 bits) 0000H - 0FFFH

µPD17P149

Program memory stores the program and the constant data table. The reset address and interrupt vector

address are stored at the top of the program memory.

The program memory address is specified by the program counter.

3

*

1 8

µPD17145 SUB-SERIES USER’S MANUAL

3.1 PROGRAM MEMORY CONFIGURATION

Figure 3-1 shows the program memory map. A step consists of 16 bits of program memory. A 2K-step

area is called a page.

Direct subroutine calls can specify address 0000H to 07FFH (page 0) in program memory. Branch

instructions, indirect subroutine calls, and table references can specify any address in each entire program

memory.

Figure 3-1. Program Memory Map

Address

0000H

0001H

0002H

0003H

0004H

0005H

03FFH

07FFH

0FFFH

Reset start address

Serial interface interrupt vector

Basic interval timer interrupt vector

Timer 1 interrupt vector

Timer 0 interrupt vector

External (INT) interrupt vector

(For the µPD17145)

(For the µPD17147)

16 bits

Page 0

Page 1

Subroutine entry
address which can be
specified in the CALL
addr instruction

Branch address which can
be specified in the BR
addr instruction

Branch address which can
be specified in the BR @AR
instruction

Subroutine entry address
which can be specified in
the CALL @AR instruction

Table reference address
which can be specified in
the MOVT DBF, @AR
instruction

(For the µPD17149 and µPD17P149)

1 9

CHAPTER 3 PROGRAM MEMORY (ROM)

3.2 PROGRAM MEMORY USAGE

Program memory has the following two main functions:

(1) Storage of the program

(2) Storage of constant data

The program is made up of the instructions which operate the CPU (Central Processing Unit). The CPU

executes sequential processing according to the instructions stored in the program. In other words, the CPU

reads each instruction in the order stored by the program in program memory and executes it.

Since all instructions are 16-bit long words, each instruction is stored in a single location in program memory.

Constant data, such as display output patterns, are set beforehand. The MOVT instruction is used for

reading constant data in program memory. This instruction is used to transfer data from program memory

to the data buffer (DBF) in data memory. Reading the constant data in program memory is called table

reference.

Program memory is read-only (ROM: Read Only Memory) and therefore cannot be changed by any

instructions.

3.2.1 Flow of the Program

The program is usually stored in program memory starting from memory location 0000H and executed

sequentially one memory location at a time. However, if for some reason a different kind of program is to

be executed, it will be necessary to change the flow of the program. In this case, the branch instruction (BR

instruction) is used.

If the same section of program code is going to appear in a number of places, reproducing the code each

time it needs to be used will decrease the efficiency of the program. In this case, this section of program code

should be stored in only one place in memory. Then, the same section of program code is called by using

the CALL instruction. Such a piece of code is called a subroutine. As opposed to a subroutine, code used

during normal operation is called the main routine.

For cases unrelated to the flow of the program (in which a section of code is to be executed when a certain

condition arises), the interrupt function is used. Whenever a condition arises that is unrelated to the flow of

the program, the interrupt function can be used to branch the program to a prechosen memory location (called

a vector address).

Items (1) to (4) explain branching of the program using the interrupt function and CPU instructions.

2 0

µPD17145 SUB-SERIES USER’S MANUAL

(1) Vector address

Table 3-2 shows the address to which the program is branched (vector address) when a reset or interrupt

occurs.

Table 3-2. Vector Address

Vector address Cause of the interrupt

0000H Reset

0001H Serial interface interrupt

0002H Basic interval timer interrupt

0003H Timer 1 interrupt

0004H Timer 0 interrupt

0005H External interrupt (INT pin)

(2) Direct branch

When executing a direct branch (BR addr) instruction, the program branches to the address specified by

the value of the operand (addr).

For the µPD17145, the 10 low-order bits of the operand are used to specify a branch destination address

in program memory. (Note, however, that addresses exceeding 03FFH cannot be specified. If an address

is specified outside of this range, an error will occur in the assembler.)

For the µPD17147, all bits (11 bits) of the operand are used to specify a branch destination address in

program memory. (Note, however, that addresses exceeding 07FFH cannot be specified. If an address

is specified outside of this range, an error will occur in the assembler.)

For the µPD17149, the least significant bit of the operation code (hereinafter opcode) and all bits (11 bits)

of the operand (12 bits in total) are used to specify a branch destination address in program memory. (Note,

however, that addresses exceeding 0FFFH cannot be specified. If an address is specified outside of this

range, an error will occur in the assembler.)

A BR addr instruction can thus be used to branch to any address in program memory.

• Precautions in debugging the µPD17149

The machine code for a BR addr instruction has only 11 bits for specifying the program memory address.

Different opcodes are assigned for BR addr instructions depending on the page which contains the

destination address. When the destination address of a direct branch is in page 1, the machine code

does not correspond to the actual address in the program.

Normally, the assembler automatically controls which opcode should be used. Therefore, take care

when patching is performed using machine code directly rather than the assembler.*

2 1

CHAPTER 3 PROGRAM MEMORY (ROM)

Table 3-3. Correspondence between the Figure 3-2. Example of a Machine

Destination Address and the Code of a BR addr

Machine Code of a BR addr instruction

Instruction

Destination Machine code of
address BR addr

0000H - 07FFH 0C000H - 0C7FFH
(page 0)

0800H - 0FFFH 0D000H - 0D7FFH
(page 1)

(3) Indirect branch

When executing an indirect branch instruction (BR @AR), the program branches to the address specified

by the contents of the address register (AR). A BR @AR instruction can be used to branch to any address

in program memory.

Also see Section 8.2 .

(4) Subroutine

The subroutine call instructions (CALL) are used for branching to a subroutine.

Two types of CALL instructions are supported: direct subroutine call instruction (CALL addr) which

branches to the address specified by the addr operand; and indirect subroutine call instruction (CALL

@AR) which branches to the address specified in the address register.

The RET or RETSK instruction is used for return from a subroutine. Executing the RET or RETSK

instruction returns to the program memory address next to the CALL instruction.

The RETSK instruction treats the first instruction after return as a NOP instruction.

Address

0000H

0500H

07FFH
0800H

0900H

0FFFH

Label

AAA:

BBB:

Instruction (Machine code)
BR AAA (0C500)
BR BBB (0D100)

Page 0

BR AAA (0C500)

BR BBB (0D100)

Page 1

Program memory

2 2

µPD17145 SUB-SERIES USER’S MANUAL

Address

0000H

0500H

07FFH
0800H

0FFFH

Label Instruction
CALL SUB1
CALL SUB2JMP

BR SUB2

Program memory

SUB2JMP:

SUB1:

SUB2:

RET

CALL SUB1

RET

...

Page 0

Page 1

<1> Direct subroutine call

When using a direct subroutine call (CALL addr), all bits (11 bits) of the operand are used to specify

a program memory address of the called subroutine. When a CALL addr instruction is used, the

starting address of the subroutine must be in page 0 (addresses 0000H to 07FFH). Otherwise, the

subroutine cannot be called directly. To branch to a subroutine whose starting address is located

at an area other than page 0, place a branch instruction (BR) in page 0, as shown in Figure 3-3,

to call the subroutine (SUB2) in the following example.

Figure 3-3. CALL addr Instruction

<2> Indirect subroutine call

When using an indirect subroutine call (CALL @AR), the value in the address register (AR) should

be an address of the called subroutine. This instruction can be used to branch to any address in

program memory. See Section 8.2 .

2 3

CHAPTER 3 PROGRAM MEMORY (ROM)

3.3 TABLE REFERENCE

Table reference is used to reference constant data in program memory.

The table reference instruction (MOVT DBF, @AR) is used to store the contents of the program memory

address specified by the address register in the data buffer.

Since each location in program memory contains 16 bits of information, the MOVT instruction causes 16

bits of data to be stored in the data buffer. The address register can be used to table reference any location

in program memory.

Caution When referencing a table, be careful not to exceed the usable stack level; one level of the

stack is temporarily used. Also see Section 8.2 and Chapter 10.

Remark Exceptionally, execution of a table reference instruction requires two instruction cycles.

Figure 3-4. MOVT DBF, @AR Instruction

Notes 1. Always 0 for the µPD17145 and µPD17147

2. Always 0 for the µPD17145

*

b0b15 b1b2b3b4b5b6b7b8b9b14 b13 b12 b11 b10

Program memory

b0b1b2b3b0b1b2b3b0b1b2b3b0b1b2b3

AR3 AR2 AR1 AR0

Address register

0 0 0 0

16-bit data read

Table addressing

b0b1b2b3b0b1b2b3b0b1b2b3b0b1b2b3

DBF3

Data buffer

DBF2 DBF1 DBF0

Constant dataNote

2

Note

1

2 4

µPD17145 SUB-SERIES USER’S MANUAL

(1) Constant data table

Example 1 shows an example of code used to reference a constant data table.

Example 1. Code used for reading the data in a constant data table.

OFFSET MEM 0.00H ; Storage area for an offset address.

ROMREF:

; BANK0

; Stores the start address of the constant data

; table in the address register (AR).

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

; MOV RPH, #0 ; Set the register pointer to row

MOV RPL, #7 SHL 1 ; address 7.

ADD AR0, OFFSET ; Adds the offset address.

ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

MOVT DBF, @AR ; Reads the constant data.

TABLE:

DW 0001H ; When OFFSET = 0H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

DW 0400H

DW 0800H

DW 1000H

DW 2000H

DW 4000H

DW 8000H ; When OFFSET = 0FH

END

2 5

CHAPTER 3 PROGRAM MEMORY (ROM)

(2) Branch address table

Example 2 shows an example of code used to reference a branch address table.

Example 2. Code used for branching to the address in a branch address table.

OFFSET MEM 0.00H ; Storage are for an offset address.

ROMREF:

; BANK0 ; Stores the start address of the constant data

; table in the address register (AR).

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

; MOV RPH, #0 ; Sets the register pointer to row

MOV RPL, #7 SHL 1 ; address 7.

ADD AR0, OFFSET ; Adds the offset address.

ADDC AR1, #0

MOVT DBF, @AR ; Reads the branch address.

PUT AR, DBF ; AR <– Branch address

BR @AR

TABLE:

DW 0001H ; When OFFSET = 0H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H ; When OFFSET = 9H

END

2 6

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

2 7

CHAPTER 4 PROGRAM COUNTER (PC)

4

CHAPTER 4 PROGRAM COUNTER (PC)

The program counter is used to specify an address in program memory.

4.1 PROGRAM COUNTER CONFIGURATION

As shown in Figure 4-1, the program counter is a 12-bit binary counter.

Remark The size of the program counter depends on the product. The µPD17145 has the 10-bit program

counter and the µPD17147 has the 11-bit program counter.

Figure 4-1. Program Counter

PC (µPD17145)

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

PC11 PC10

MSB

PC (µPD17147)

PC (µPD17149 and µPD17P149)

2 8

µPD17145 SUB-SERIES USER’S MANUAL

4.2 PROGRAM COUNTER OPERATION

Normally, the program counter is automatically incremented each time a command is executed. The

memory address at which the next instruction to be executed is stored is assigned to the program counter

under the following conditions: At reset; when a branch, subroutine call, return, or table referencing instruction

is executed; or when an interrupt is received.

Sections 4.2.1 to 4.2.7 explain program counter operation during execution of each instruction.

Figure 4-2. Value of the Program Counter After an Instruction Is Executed

Remark The µPD17145 does not have PC11 or PC10. The µPD17147 does not have PC11.

4.2.1 Program Counter at Reset

By setting the RESET terminals to low, the program counter is set to 000H.

Figure 4-3. Value in the Program Counter after Reset

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

0 0 0 0 0 0 0 0 0 0During reset

BR addr

CALL addr

BR @AR

CALL @AR

(MOVT DBF, @AR)

RET

RETSK

RETI

During interrupt

Value in the address register (AR)

Value specified in addr

Value in the address stack location pointed to by the stack pointer

(return address)

Vector address for the interrupt

Program counter valueProgram counter

 bit
Instruction PC10

0

PC11

0

0

1

0

0

MSB LSB

0 0 0 0 0 0 0 0 0

All bits are set to 0

0 0

2 9

CHAPTER 4 PROGRAM COUNTER (PC)

4.2.2 Program Counter during Execution of the Branch Instruction (BR)

There are two ways to specify branching using the branch instruction. One is branch to the address specified

in the operand using the direct branch instruction (BR addr). The other is branch to the address specified

by the address register using the indirect branch instruction (BR @AR).

The address specified by a BR addr instruction is placed in the program counter.

Figure 4-4. Value in the Program Counter during Execution of a BR addr Instruction

Remark The µPD17145 does not have PC11 or PC10. The µPD17147 does not have PC11.

A BR @AR instruction causes the address in the address counter to be placed in the program counter.

Figure 4-5. Value in the Program Counter during Execution of a BR @AR Instruction

Remark The µPD17145 does not have PC11 or PC10. The µPD17147 does not have PC11.

PC10 PC9 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

Value specified in addr

PC8 PC7PC11

0

1

PC11 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

AR11 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

PC10 PC8

AR10 AR8

PC9

AR9

3 0

µPD17145 SUB-SERIES USER’S MANUAL

4.2.3 Program Counter during Execution of Subroutine Calls (CALL)

There are two ways to specify branching using subroutine calls. One is to branch to the address specified

in the operand using the direct subroutine call (CALL addr). The other is branch to the address specified by

the address register using the indirect subroutine call (CALL @AR).

A CALL addr instruction causes the value in the program counter to be saved in the address stack register

and then the address specified in the operand to be placed in the program counter. CALL addr instructions

can specify addresses 0000H to 07FFH.

Figure 4-6. Value in the Program Counter during Execution of a CALL addr Instruction

Remark The µPD17145 does not have PC11 or PC10. The µPD17147 does not have PC11.

A CALL @AR instruction causes the value in the program counter to be saved in the address stack register

and then the value in the address register to be placed in the program counter.

Figure 4-7. Value in the Program Counter during Execution of a CALL @AR Instruction

Remark The µPD17145 does not have PC11 or PC10. The µPD17147 does not have PC11.

PC11 PC10 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

Value specified in addr

PC9 PC8 PC7

0

PC11 PC10 PC9 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

AR11 AR10 AR9 AR5 AR4 AR3 AR2 AR1 AR0

PC8 PC7

AR8 AR7

PC6

AR6

Address stack register n (n = 0 to 4)

3 1

CHAPTER 4 PROGRAM COUNTER (PC)

4.2.4 Program Counter during Execution of Return Instructions (RET, RETSK, RETI)

During execution of a RET, RETSK, or RETI instruction, the program counter is restored to the value saved

in the address stack register.

Figure 4-8. Value in the Program Counter during Execution of a RET, RETSK, or RETI Instruction

Remark The µPD17145 does not have PC11 or PC10. The µPD17147 does not have PC11.

4.2.5 Program Counter during Table Reference (MOVT)

During execution of MOVT DBF, @AR instruction, the value in the program counter is saved in the stack,

the address register is set by the program counter, then the contents stored at that program memory location

is read into the data buffer (DBF). After the program memory contents are read into DBF, the program counter

is restored to the value saved in the address stack register.

Caution One level of the address stack is temporarily used during execution of table reference. Be

careful of the stack level.

4.2.6 Program Counter during Execution of Skip Instructions (SKE, SKGE, SKLT, SKNE, SKT, SKF)

When skip conditions are met and a skip instruction is executed, the instruction immediately following the

skip instruction is treated as a NOP instruction. Therefore, whether skip conditions are met or not, the number

of instructions executed and instruction execution time remain the same.

4.2.7 Program Counter When an Interrupt Is Received

When an interrupt is received, the value in the program counter is saved in the address stack. Next, the

vector address for the interrupt received is placed in the program counter.

PC11 PC10 PC6 PC5 PC4 PC3 PC2 PC1 PC0

MSB LSB

(n = 0 to 4)Address stack register n

PC9 PC8 PC7

3 2

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

3 3

CHAPTER 5 STACK

CHAPTER 5 STACK

The stack is a register used to save information such as the program return address and the contents of

the system register during execution of subroutine calls, interrupts and similar operations.

5.1 STACK CONFIGURATION

Figure 5-1 shows the configuration of the stack.

The stack consists of the following parts: one 3-bit binary counter stack pointer (SP), five 10-bit (µPD17145)/

11-bit (µPD17147)/12-bit (µPD17149) address stack registers (ASR), and three 5-bit interrupt stack registers

(INTSK).

Figure 5-1. Stack Configuration

5.2 FUNCTIONS OF THE STACK

The stack is used to save the return address during execution of subroutine calls and table reference

instructions. When an interrupt occurs, the program return address and the program status word (PSWORD)

are automatically saved in the stack. Then, all bits of the PSWORD are cleared to 0.

5

Address stack register
(ASR)

Interrupt stack register
(INTSK)

Address stack register 0

Address stack register 1

Address stack register 2

Address stack register 3

Address stack register 4

Stack pointer
(SP)

b2 b1 b0

SPb2 SPb1 SPb0

BCDSK0 CMPSK0 CYSK0 IXESK0ZSK0

0H

0H

1H

2H

3H

4H

1H

2H

BCDSK1 CMPSK1 CYSK1 IXESK1ZSK1

BCDSK2 CMPSK2 CYSK2 IXESK2ZSK2

b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0b11

When reset, the stack

pointer (SP) is initialized

to 5H.

3 4

µPD17145 SUB-SERIES USER’S MANUAL

5.3 ADDRESS STACK REGISTER (ASR)

As shown in Figure 5-1, the address stack register consists of five consecutive 12-bit registers.

• A return address is stored in the address stack register when a CALL addr instruction or CALL @AR

instruction, or the first cycle of a MOVT DBF, @AR instruction is executed, or an interrupt is received.

• When a PUSH AR instruction is executed, the contents of the address register (AR) is stored in the ASR

at the address pointed to by the stack pointer minus 1.

• When a RET, RETSK, or RETI instruction, or the second cycle of a MOVT DBF, @AR instruction is

executed, the contents of the ASR (return address) pointed to by the stack pointer is restored to the

program counter and the stack pointer is incremented.

• When a POP AR instruction is executed, the value in the ASR pointed to by the stack pointer is transferred

to the address register and the stack pointer is incremented.

Caution If the stack pointer causes an underflow when a CALL addr or CALL @AR instruction has

been executed, or an interrupt has been handled, the underflow is determined to be a

software crush. The controller generates an internal reset signal and initializes all internal

hardware to its initial state. Then, the program starts at address 0000H.

Remark The size of the ASR depends on products. The ASRs of the µPD17145 and µPD17147 consist

of five consecutive 10-bit and 11-bit registers respectively.

5.4 INTERRUPT STACK REGISTER (INTSK)

As shown in Figure 5-1, the interrupt stack register (INTSK) consists of three 5-bit registers.

• When an interrupt is received, five bits in the system register (SYSREG) (mentioned later) that is, each

of the 5-bit program status word (PSWORD) flags (BCD, CMP, CY, Z, IXE), are saved in the INTSK.

All the bits of the PSWORD are cleared to 0 after they are saved.

• When the RETI instruction is executed, the PSWORD is restored from the contents of the INTSK.

• In the INTSK, every time an interrupt is received, necessary data is saved.

Caution When more than three interrupts are received, the data from the first interrupt is lost.

3 5

CHAPTER 5 STACK

5.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTER

As shown in Figure 5-1, the stack pointer (SP) is a 3-bit binary counter used to point to addresses in the

five address stack registers. The stack pointer (SP) is located at address 01H in the register file and initialized

to 5H when reset.

• As shown in Table 5-1, the SP is decremented when a CALL addr or CALL @AR instruction, the first

cycle of a MOVT DBF, @AR instruction, or a PUSH AR instruction is executed, or an interrupt is accepted.

• The SP is incremented when a RET or RETSK instruction is executed, the second instruction cycle of

a MOVT DBF, @AR instruction, a POP AR instruction, or a RETI instruction is executed.

The interrupt stack counter as well as the stack pointer (SP) is decremented when an interrupt is accepted.

The interrupt stack counter is incremented by a RETI only.

Table 5-1. Operation of the Stack Pointer

Instruction Stack pointer value Counter of interrupt stack register

CALL addr –1 Does not change
CALL @AR
MOVT DBF, @AR (first instruction cycle)
PUSH AR

RET +1
RETSK
MOVT DBF, @AR (second instruction cycle)
POP AR

Interrupt receipt –1 –1

RETI +1 +1

Remark Exceptionally, execution of a MOVT DBF, @AR instruction requires two instruction cycles.

As mentioned above, the stack pointer (SP) is a 3-bit counter and therefore can conceivably store any of

the eight values from 0H to 7H. Since there are only five address stack registers, however, a stack pointer

(SP) value that is greater than five will cause an internal reset signal to be generated (to prevent a software

crash).

Since the stack pointer (SP) is located in the register file, it can be written to directly by using the POKE

instruction to manipulate the register file. When this is done, the stack pointer (SP) value will change but the

values in the address stack register will not be affected. The stack pointer (SP) can also be read by using

the PEEK instruction.

When reset, the stack pointer (SP) is set to 5H.

*

3 6

µPD17145 SUB-SERIES USER’S MANUAL

*

*

5.6 STACK OPERATION

Stack operation during execution of each command is explained in Sections 5.6.1 to 5.6.3.

5.6.1 Stack Operation during CALL, RET, or RETSK Instruction

Table 5-2 shows operation of the stack pointer (SP), address stack register, and the program counter (PC)

during execution of the CALL, RET, or RETSK instruction.

Table 5-2. Operation of the Stack Pointer during Execution of the CALL, RET, or RETSK Instruction

Instruction Operation

CALL addr <1> Stack pointer (SP) is decremented.
CALL @AR <2> Program counter (PC) is saved in the address stack register pointed to by the stack

pointer (SP).
<3> Value specified by the instruction operand (addr or @AR) is transferred to the

program counter.

RET <1> Value in the address stack register pointed to by the stack pointer (SP) is restored to
RETSK the program counter (PC).

<2> Stack pointer (SP) is incremented.

When the RETSK instruction is executed, the first command after data restoration becomes a NOP

instruction.

5.6.2 Stack Operation during Table Reference (MOVT DBF, @AR)

Table 5-3 shows stack operation during table reference.

Table 5-3. Stack Operation during Execution of the MOVT DBF, @AR Instruction

Instruction Instruction cycle Operation

MOVT DBF, @AR First <1> Stack pointer (SP) is decremented.
<2> Program counter (PC) is saved in the address stack register

pointed to by the stack pointer (SP).
<3> Value in the address register (AR) is transferred to the

program counter (PC).

Second <4> Contents of the program memory (ROM) pointed to by the
program counter (PC) is transferred to the data buffer
(DBF).

<5> Value in the address stack register pointed to by the stack
pointer (SP) is restored to the program counter (PC).

<6> Stack pointer (SP) is incremented.

Caution When executing a MOVT DBF, @AR instruction, be careful not to exceed the usable stack

level; one level of the stack is temporarily used.

Remark Exceptionally, execution of a MOVT DBF, @AR instruction requires two instruction cycles.

3 7

CHAPTER 5 STACK

5.6.3 Stack Operation during Interrupt Receipt and Execution of a RETI Instruction

Table 5-4 shows stack operation during interrupt receipt and execution of a RETI instruction.

Table 5-4. Stack Operation during Interrupt Receipt and Execution of the RETI Instruction

Instruction Operation

Receipt of interrupt <1> Stack pointer (SP) is decremented.
<2> Value in the program counter (PC) is saved in the address stack register

pointed to by the stack pointer (SP).
<3> Values in the PSWORD flags (BCD, CMP, CY, Z, IXE) are saved in the interrupt

stack register.
<4> Vector address is transferred to the program counter (PC)

RETI <1> Values in the interrupt stack register are restored to the PSWORD flags (BCD,
CMP, CY, Z, IXE).

<2> Value in the address stack register pointed to by the stack pointer (SP) is
restored to the program counter (PC).

<3> Stack pointer (SP) is incremented.

5.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS

During execution of operations such as subroutine calls and returns, the stack pointer (SP) simply functions

as a 3-bit counter which is incremented and decremented. When the value in the stack pointer (SP) is 0H

and a CALL or MOVT instruction is executed or an interrupt is received, the stack pointer (SP) is decremented

to 7H. The µPD17149 treats this condition as a fault and generates an internal reset signal.

In order to avoid this condition, when the address stack register is being used frequently, use the PUSH

and POP instructions to save or restore the address stack register if necessary.

Table 5-5 shows stack operation during execution of the PUSH and POP instructions.

Table 5-5. Stack Operation during Execution of the PUSH and POP Instructions

Instruction Operation

PUSH <1> Stack pointer (SP) is decremented.
<2> Value in the address register (AR) is transferred to the address stack register

pointed to by the stack pointer (SP).

POP <1> Value in the address stack register pointed to by the stack pointer (SP) is
transferred to the address register (AR).

<2> Stack pointer (SP) is incremented.

3 8

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

3 9

CHAPTER 6 DATA MEMORY (RAM)

CHAPTER 6 DATA MEMORY (RAM)

Data memory (RAM) stores data such as operation and control data. Data can be read from or written to

data memory with an instruction during normal operation.

6.1 DATA MEMORY CONFIGURATION

Data memory locations have 7-bit addresses. The three high-order bits of each address are called the row

address, and the four low-order bits are called the column address.

For example, the row address of address 1AH is 1H. The column address is 0AH.

Each addressed memory location is 4-bits (one nibble) long.

Remark A “byte” is a unit of eight bits. A “nibble” is a unit of four bits.

Four bits = one nibble

Eight bits = two nibbles = one byte

16 bits = four nibbles = two bytes

Data memory contains an area to which the user is allowed to store data freely, as well as areas which

are reserved for the use of specific functions.

The areas reserved for specific functions are as follows:

• System register (SYSREG) (See Chapter 8 .)

• Data buffer (DBF) (See Chapter 10 .)

• Port registers (See Chapter 12 .)

Figure 6-1. Organization of Data Memory

6

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

DBF3 DBF2 DBF1 DBF0

P0A
 (4 bits)

BANK0

Example:

Address 1AH

of BANK0

P0F
(2 bits)

P0B
 (4 bits)

P0C
 (4 bits)

P0D
 (4 bits)

P0E
(4 bits)

Column address

System register

4 0

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

4 1

CHAPTER 7 GENERAL REGISTER (GR)

CHAPTER 7 GENERAL REGISTER (GR)

The general register, as the name implies, is a general register used for data transfer and manipulation.

In the 17K series, the location of the general register is not fixed. The area used for the general register is

in data memory, as specified by the general register pointer (RP). Thus, part of the data memory area can

be specified as the general register as required, allowing data transfer in data memory and data memory

manipulation to be performed with a single instruction.

7.1 GENERAL REGISTER POINTER (RP)

RP is a pointer used to specify part of data memory as the general register. In RP, specify a desired data

memory bank and row address for the general register. RP consists of seven bits: 7DH (RPH), and the three

high-order bits of 7EH (RPL) in the system register (see Chapter 8).

Set a bank in RPH, and a data memory row address in RPL.

Caution The least significant bit of RPL is the BCD flag (see Section 8.7).

Remark RPH of the µPD17149 is always 0, indicating bank 0. (This prevents other than bank 0 from being

specified.)

Figure 7-1. General Register Pointer Configuration

7

0

1

2

3

4

5

6

7

Address

Name

Symbol

Bits

Data

Reset

0 0 0

0 0 0 0 0 0 0

b3 b2 b1 b0 b3 b2 b1 b0

B

C

D

RPH RPL

7DH 7EH

General register pointer

(RP)

General register (16 nibbles)

System register RP

Column address

General register area

when RPH = 0000B,

RPL = 010XB

The general register
pointer (RP) can be
used to specify any
row address in
address locations 0H
to 7H. R

ow
 a

dd
re

ss

0 1 2 3 4 5 6 7 8 9 A B C D E F
BANK0

0

4 2

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

4 3

CHAPTER 8 SYSTEM REGISTER (SYSREG)

CHAPTER 8 SYSTEM REGISTER (SYSREG)

The system register (SYSREG), located in data memory, is used for direct control of the CPU.

8.1 SYSTEM REGISTER CONFIGURATION

Figure 8-1 shows the allocation address of the system register in data memory. As shown in Figure 8-1,

the system register is allocated in addresses 74H to 7FH of data memory.

Since the system register is allocated in data memory, it can be manipulated using any of the instructions

available for manipulating data memory. Therefore, it is also possible to put the system register in the general

register.

Figure 8-1. Allocation of System Register in Data Memory
8

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss Data memory

(BANK0)

System register (SYSREG)
Port register

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3
4 5 6 7 8 9 A B C D E F

4 4

µPD17145 SUB-SERIES USER’S MANUAL

Figure 8-2 shows the configuration of the system register. As shown in Figure 8-2, the system register

consists of the following seven registers.

• Address register (AR)

• Window register (WR)

• Bank register (BANK)

• Index register (IX)

• Data memory row address pointer (MP)

• General register pointer (RP)

• Program status word (PSWORD)

Figure 8-2. System Register Configuration

Notes 1. A bit indicating zero is fixed to zero.

2. Bit b3 and b2 of AR2 are always 0 for the µPD17145. Bit b3 of AR2 is always 0 also for the

µPD17147.

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

IXH IXM

MPH MPL
AR3 AR2 AR1 AR0 WR BANKSymbol

Address

Window

register

(WR)

Bank

register

(BANK)

Address register

(AR)

General

register

pointer

(RP)

Program

status

word

(PSWORD)

IXL RPH RPL PSW

Data memory
row address
pointer (MP)

Index register
(IX)

Name

Bit

M
P
E

B
C
D

C
M
P

C
Y Z

I
X
E

0 0 0 0 0 0 0 0 0 0 0 0 0DataNote 1

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b 1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

(IX)

(RP)(BANK) (MP)(AR)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Not
defined 0

Initial value
when reset 0

0 0 0Note 2

4 5

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.2 ADDRESS REGISTER (AR)

8.2.1 Address Register Configuration

Figure 8-3 shows the configuration of the address register.

As shown in Figure 8-3, the address register consists of the sixteen bits in address 74H to 77H of the system

register. However, since the 4/5/6 high-order bits are always set to 0, the address register is actually 12/11/

10 bits. When the system is reset, all sixteen bits of the address register are reset to 0.

Figure 8-3. Address Register Configuration

Note Bit b3 and b2 of AR2 are always 0 for the µPD17145. Bit b3 of AR2 is always 0 also for the µPD17147.

8.2.2 Address Register Functions

The address register (AR) is used to specify an address in program memory when executing a BR @AR

instruction, CALL @AR instruction, or MOVT DBF, @AR instruction. The contents of the AR can be written

to the address stack register (ASR) by the PUSH AR stack manipulation instruction. Also, the contents of

the ASR can be read into the AR by the POP AR stack manipulation instruction.

Items (1) to (4) explain address register operation during execution of each instruction.

The address register can be incremented by using the dedicated increment instruction (INC AR).

(1) Indirect branch instruction (BR @AR)

When the BR @AR instruction is executed, the program branches to the address in program memory

specified by the contents of the address register.

(2) Indirect subroutine call (CALL @AR)

When the CALL @AR instruction is executed, the subroutine located at the address in program memory

specified by the contents of the address register is called.

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

0 000

0 0 0 0

AR1 AR0AR2AR3

76H 77H75H74HAddress

Name Address register (AR)

Symbol

Bit

Data

Initial value when
reset

(AR)

Note Note

4 6

µPD17145 SUB-SERIES USER’S MANUAL

(3) Table reference (MOVT DBF, @AR)

When the MOVT DBF, @AR instruction is executed, the contents of the program memory (16-bit data)

located at the address specified by the contents of the address register are read into the data buffer

(addresses 0CH to 0FH of BANK0 in data memory).

(4) Stack manipulation instructions (PUSH AR, POP AR)

When the PUSH AR instruction is executed, the stack pointer (SP) is first decremented and then the

address register is stored in the address stack register pointed to by the stack pointer.

When the POP AR instruction is executed, the contents of the address stack register pointed to by the

stack pointer is transferred to the address register and then the stack pointer is incremented.

Also see Chapter 5 .

(5) Address register used as a peripheral hardware register

The address register can be manipulated four bits at a time. The address register can also be used as

a peripheral hardware register for transferring 16-bit data to the data buffer. In other words, by using the

PUT AR, DBF and GET DBF, AR instructions, the address register can be used to transfer 16-bit data

to the data buffer.

Note that the data buffer is allocated in addresses 0CH to 0FH of BANK0 in data memory.

Figure 8-4. Address Register Used as a Peripheral Hardware Register

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

DBF3 DBF2 DBF1DBF0

AR3 AR2 AR1 AR0 System register

(BANK0) Column address

R
ow

 a
dd

re
ss

Data buffer

Address register

16-bit data transfer available

4 7

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.3 WINDOW REGISTER (WR)

8.3.1 Window Register Configuration

Figure 8-5 shows the configuration of the window register.

As shown in Figure 8-5, the window register consists of four bits allocated at address 78H of the system

register. The contents of the window register is undefined after a system reset. However, when the RESET

input is used to release the system from HALT or STOP mode, the previous state of the window register is

maintained.

Figure 8-5. Window Register Configuration

8.3.2 Window Register Functions

The window register is used to transfer data to and from the register file (RF).

Data is transferred to and from the register file using instructions PEEK WR, rf and POKE rf, WR.

See Section 9.2.3 for details.

8.4 BANK REGISTER (BANK)

Figure 8-6 shows the configuration of the bank register.

The bank register consists of four bits at address 79H of the system register. However, all bits are set

to 0.

Figure 8-6. Bank Register Configuration

b3 b2 b1 b0Bit

Symbol

Name

Address

Data

Initial value when reset

78H

Window register

WR

Not defined

b3 b2 b1 b0

0

0 0 0

BANK

79HAddress

Name

Symbol

Bit

Data

Initial value when
reset

Bank register

(BANK)

0

4 8

µPD17145 SUB-SERIES USER’S MANUAL

8.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MEMORY POINTER: MP)

8.5.1 Index Register (IX)

IX is used for data memory address modification. IX differs from MP in that IX is used to modify the bank

and the address specified by operand m.

As shown in Figure 8-7, IX consists of 12 bits in the system register: 7AH (IXH), 7BH (IXM), and 7CH (IXL).

The index register enable flag (IXE) that enables address modification with IX is assigned to the least significant

bit of PSW.

When IXE = 1, the data memory address specified by operand m is modified by ORing it with the contents

of IXM and IXL. The specified bank is also modified by ORing it with the contents of BANK and IXH.

Remark IXH of the µPD17149 is always 0. Even when IXE = 1, the bank is not modified. (This prevents

other than bank 0 from being specified.)

8.5.2 Data Memory Row Address Pointer (Memory Pointer: MP)

MP is used for data memory address modification. It differs from IX in that MP is used to modify the bank

and the row address of the address specified indirectly by operand @r.

As shown in Figure 8-7, MPH and IXH, as well as MPL and IXM, are located at the same addresses,

respectively. (Both MPH and IXH are at 7AH in the system register, while both MPL and IXM are at 7BH in

the system register). The seven bits, consisting of the three low-order bits of MPH and MPL, are actually used

as MP. The least significant bit of MPH is the memory pointer enable flag (MPE) that enables address

modification by MP.

When MPE = 1, the data memory bank and row address specified indirectly by operand @r are not the

contents of BANK and mR; the address specified by MP is used. (The column address is specified by r,

regardless of the setting of MPE.) In this case, the four bits consisting of the three low-order bits of MPH and

the most significant bit of MPL specify a bank, while the three low-order bits of MPL specify a row address.

Remark For the µPD17149, the three low-order bits of MPH and the most significant bit of MPL are

always 0. Even when MPE = 1, bank 0 is selected. (This prevents other than bank 0 from being

specified).

4 9

CHAPTER 8 SYSTEM REGISTER (SYSREG)

Logical OR Logical OR

IXE

0

0

1

1

MPE

0

1

0

1

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0b2 b1 b0

BANK m BANK mR (r)

Data memory address specified by m Indirect transfer address specified by @r

Bank Row address Column address Bank Row address Column address

BANK m MPH MPL (r)

BANK m BANK mR

(r)

IXH IXM IXL IXH IXM

Not to be set

Figure 8-7. Configuration of Index Register and Memory Pointer

Figure 8-8. Modification of Data Memory Addresses Using the Index Register and Memory Pointer

BANK : Bank register MP : Memory pointer

IX : Index register MPE: Memory pointer enable flag

 IXE : Index enable flag MPH: Three high-order bits of the memory pointer

IXH : Index register bits 8 to 10 MPL : Four low-order bits of the memory pointer

 IXM : Index register bits 4 to 7 r : General register column address

 IXL : Index register bits 0 to 3 RP : General register pointer

m : Data memory address specified (x) : Contents of x

by mR and mC x: direct address such as r

 mR : Data memory row address

 mC : Data memory column address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7AH 7BH 7CH 7FHAddress

Initial value when reset 0

b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1b3

Index register (IX)

Memory pointer (MP)

IXH

MPH

IXM

MPL

IXL

Bit

Name

Symbolic name

Flag name

Data

0 0 0

(MP)

(IX)

M

P

E

I

X

E

b0

PSW

0

Four low-order bits

of the program

status word

(PSWORD)

5 0

µPD17145 SUB-SERIES USER’S MANUAL

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

Table 8-1. Instructions for Which Address Modification Is Performed

Arithmetic operation ADD r, m
ADDC
SUB
SUBC m, #n4

Logical operation AND r, m
OR
XOR m, #n4

Evaluation SKT
m, #nSKF

Comparison SKE
SKGE
SKLT

m, #n4

SKNE

Transfer LD r, m

ST m, r

MOV m, #n4

@r, m
m, @r

8.5.3 IXE = 0 and MPE = 0 (No Data Memory Modification)

As shown in Figure 8-8, data memory addresses are not affected by the index register and the data memory

row address pointer.

(1) Data memory manipulation instructions

Example 1. Execution of ADD r, m when the general register is in row address 0

R003 MEM 0.03H

M061 MEM 0.61H

ADD R003, M061 ; Memory-to-memory addition (0.03H) <– (0.03H)

; + (0.61H)

As shown in Figure 8-9, when this instruction is executed, the data in general register address R003 and

data memory address M061 are added together and the result is stored in general register address R003.

5 1

CHAPTER 8 SYSTEM REGISTER (SYSREG)

(2) Indirect transfer of data in the general register (horizontal indirect transfer)

Example 2. Execution of MOV @r, m when the general register is in row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV R005, #8 ; R005 <– 8 (column address setting of @r)

MOV @R005, M034 ; Indirect transfer of data in the register

; (0.38H) <– (0.34H)

As shown in Figure 8-9, when this instruction is executed, the data stored in data memory address M034

is transferred to data memory location 38H.

The MOV @r, m instruction transfers the contents of the data memory location addressed by m to a data

memory location whose column address is specified by @r and whose row address is the same as that

specified by m.

In the above example, data at M034 is transferred to 38H, where the row address is the same as that of

M034 (= 3), and the column address is specified by the contents of R005 (= 8).

Example 3. Execution of MOV m, @r when the general register is in row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV R00B, #0EH ; R00B <– 0EH (column address setting of @r)

MOV M034, @R00B ; Indirect transfer of data in the register

; (0.34H) <– (0.3EH)

As shown in Figure 8-9, when this instruction is executed, the contents of data memory stored at address

3EH is transferred to data memory location M034.

The MOV m, @r instruction transfers the contents of a data memory location whose row address is the

same as the row address of m, and whose column address is specified by @r, to a data memory location

addressed by m.

In the above example, the data at 3EH, where the row address is the same as that of M034 (= 3) and

the column address is specified by the contents of R00B (= 0EH), is transferred to M034.

5 2

µPD17145 SUB-SERIES USER’S MANUAL

Figure 8-9. Example of Operation When IXE = 0 and MPE = 0

Addresses in Example 1 Addresses in Example 2

ADD R003, M061 MOV @R005, M034

0000

Bank
Row

address

Column

address

110 0001

0000 0011000

0000

Bank
Row

address

Column

address

011 0100

0000 0101000

0000 1000011

Data memory address M

General register address R

Indirect transfer address @R

Data memory address M

General register address R

Contents
of R

Same as M

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

Column address specified

as transfer destination

Column address specified

as transfer source

Example 2. MOV @R005, M034

Example 3. MOV M034, @R00B
Example 1. ADD R003, M061

General

register8 E

5 3

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.5.4 IXE = 0 and MPE = 1 (Diagonal Indirect Data Transfer)

As shown in Figure 8-8, the indirect data transfer bank and row address specified by @r become the data

memory row address pointer value only when general register indirect data transfer instructions (MOV @r,

m and MOV m, @r) are used.

Example 1. Execution of MOV @r, m when the general register is in row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV MPL, #0110B ; MP <– 6 (row address setting of @r)

MOV MPH, #1000B ; MPE <– 1, bank <– 0

MOV R005, #8 ; R005 <– 8 (column address setting of @r)

MOV @R005, M034 ; Indirect transfer of data in the register

; (0.68H) <– (0.34H)

As shown in Figure 8-10, when this instruction is executed, the contents of data memory

address M034 is transferred to data memory location 68H.

When the MOV @r, m instruction is executed when MPE = 1, the contents of the data memory

address specified by m is transferred to the column address pointed to by the row address

@r being pointed to by the memory pointer.

In this case, the indirect address specified by @r becomes the value used for the bank and

row address data memory pointer (above example uses row address 6). The column

address is the value in the general register address specified by r (above example uses

column address 8).

Therefore the address in the above example is 68H.

This example is different from Example 2 in Section 8.5.3 when MPE = 0 for the following

reasons: In this example, the data memory row address pointer is used to point to the indirect

address bank and row address specified by @r. (In Example 2 in Section 8.5.3 , the indirect

address bank and row address are the same as m.)

By setting MPE = 1, diagonal indirect data transfer can be performed using the general

register.

5 4

µPD17145 SUB-SERIES USER’S MANUAL

Example 2. Execution of MOV m, @r when the general register is in row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV MPL, #0110B ; MP <– 6 (row address setting of @r)

MOV MPH, #1000B ; MPE <– 1, bank <– 0

MOV R00B, #0EH ; R00B <– 0EH (column address setting of @r)

MOV M034, @R00B ; Indirect transfer of data in the register

; (0.34H) <– (0.6EH)

As shown in Figure 8-10, when this instruction is executed, the data stored in address 6EH

is transferred to data memory location M034.

Figure 8-10. Example of Operation When IXE = 0 and MPE = 1

Addresses in Example 1 Addresses in Example 2

MOV @R005, M034 MOV M034, @R00B

0000

Bank
Row

address

Column

address

011 0100

0000 1011000

0000 1110110

0000

Bank
Row

address

Column

address

011 0100

0000 0101000

0000 1000110

Data memory address M

General register address R

Indirect transfer address @R

Contents
of R

Contents of MP Contents
of R

Data memory address M

General register address R

Indirect transfer address @R

Contents of MP

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

8 E

Column address specified

as transfer destination

Column address specified

as transfer source

Example 1. MOV @R005, M034

General

register

Memory

pointer

= 00110B

Example 2. MOV M034, @R00B

5 5

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.5.5 IXE = 1 and MPE = 0 (Index Modification)

As shown in Figure 8-8, when a data memory manipulation instruction is executed, any bank or address

in data memory specified by m can be modified using the index register.

When indirect data transfer using the general register (MOV @r, m or MOV m, @r) is executed, the indirect

transfer bank and address specified by @r can be modified using the index register.

Address modification is done by performing an OR operation on the data memory address and the index

register. The data memory manipulation instruction being executed manipulates data in the memory location

pointed to by the result of the operation (called the real address).

Examples are shown below.

Example 1. Execution of ADD r, m when the general register is in row address 0

R003 MEM 0.03H

M061 MEM 0.61H

MOV IXL, #0010B ; IX <– 00000010010B

MOV IXM, #0001B ;

MOV IXH, #0000B ; MPE <– 0

OR PSW, #.DF.IXE AND 0FH ; IXE <– 1

ADD R003, M061 ; (0.03H) <– (0.03H) + (0.73H)

As shown in Figure 8-11, when this instruction is executed, the value in data memory address

73H (real address) and the value in general register address R003 (address location 03H)

are added together and the result is stored in general register address R003.

When the ADD r, m instruction is executed, the data memory address specified by m

(address 61H in above example) is index modified.

Modification is done by performing an OR operation on data memory location M061 (address

61H, binary 00001100001B) and the index register (00000010010B in the above example).

The result of the operation (00001110011B) is used as a real address (address location 73H)

by the instruction being executed.

As compared to when IXE = 0 (Examples in Section 8.5.3), in this example the data memory

address being directly specified by m is modified by performing an OR operation on m and

the index register.

5 6

µPD17145 SUB-SERIES USER’S MANUAL

Figure 8-11. Example of Operation When IXE = 1 and MPE = 0

Addresses in Example 1

ADD R003, M061

0000

Bank
Row

address

Column

address

110 0001

0000 0011000

0000 0001110

BANK

0000

0000 0011

 m

001

IXM

111

0010

IXLIXH

Data memory address M

General register address R

Index modification M061

IX

Real address
(OR operation) Instruction is executed using this address.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

General

registerR003

Index modification

Example 1. ADD R003, M061

M061

M061 : 00001100001B

OR) IX : 00000010010B

Real address 00001110011B

5 7

CHAPTER 8 SYSTEM REGISTER (SYSREG)

Example 2. Indirect data transfer using the general register (execution of MOV @r, m)

R005 MEM 0.05H

M034 MEM 0.34H

MOV IXL, #0001B ; Column address <– 5 (ORing 4 with 1)

MOV IXM, #0000B ; Row address <– 3 (ORing 3 with 0)

MOV IXH, #0000B ; MPE <– 0, bank <– 0 (ORing 0 with 0)

OR PSW, #.DF.IXE AND 0FH ; IXE <– 1

MOV R005, #8 ; R005 <– 8 (column address setting of @r)

MOV @R005, M034 ; Indirect data transfer using the register

; (0.38H) <– (0.35H)

As shown in Figure 8-12, when this instruction is executed, the contents of data memory

address 35H is transferred to data memory location 38H.

When the MOV @r, m instruction is executed when IXE = 1, the data memory address

specified by m (direct address) is modified using the contents of the index register. The bank

and row address of the indirect address specified by @r are also modified using the index

register.

The bank, row address, and column address specified by m (direct address) are all modified,

and the bank and row address specified by @r (indirect address) are modified.

Therefore, in the above example the direct address m is 35H and the indirect address @r

is 38H.

This example is different from Example 3 in Section 8.5.3 when IXE = 0 for the following

reasons: In this example, the bank, row address and column address of the direct address

specified by m are modified using the index register. The general register is transferred to

the address specified by the column address of the modified data memory address and the

same row address. (In Example 3 in Section 8.5.3 , the direct address is not modified.)

Figure 8-12. Example of Operation When IXE = 1 and MPE = 0

(Indirect Data Transfer Using the General Register)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

General

registerR005

Example 2.

MOV @R005, M034

M034 : 00000110100B

OR) IX : 00000000001B

Real address 00000110101B

8

Column address specified

as transfer destination

M034

Direct

addressIndex modification Indirect address

5 8

µPD17145 SUB-SERIES USER’S MANUAL

Example 3. Clearing data memory from 00H to 6FH (setting to 0)

M000 MEM 0.00H

MOV IXL, #0 ; IX <– 0

MOV IXM, #0 ;

MOV IXH, #0 ; MPE <– 0

LOOP:

OR PSW, #.DF.IXE AND 0FH ; IXE <– 1

MOV M000, #0 ; Set data memory specified by IX to 0

INC IX ; IX <– IX + 1

AND PSW, #1110B ; IXE <– 0, IXE is set to 0 so that address

; 7FH is unchanged even if modified by IX.

SKE IXM, #7 ; Row address 7?

BR LOOP ; If not 7 then LOOP (row address is not

; cleared)

4. Processing an array

To perform operation "A (N) = A (N) + 4 (0 - N - 15)" for one-dimensional array A (N)

consisting of 8-bit elements as shown in Figure 8-13, execute the following instructions:

M000 MEM 0.00H

M001 MEM 0.01H

MOV IXH, #0

MOV IXM, #N SHR3 ; Sets the offset of the row address.

MOV IXL, #N SHL 1 AND 0FH ; Sets the offset of the column address.

OR PSW, #.DF.IXE AND 0FH ; IXE <– 1

ADD M000, #4

ADDC M001, #0 ; A(N) <– A(N) + 4

In the above example, one element consists of 8 bits. Therefore, the value resulting from

shifting N one bit to the left (value two times that of N) is set in the index register.

Figure 8-13. Example of Operation When IXE = 1 and MPE = 0 (Array Processing)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

System register

A (0)

A (8)

A (1)

A (9)

A (2)

A (10)

A (3)

A (11)

A (4)

A (12)

A (5)

A (13)

A (6)

A (14)

A (7)

A (15)

b3 b2 b1 b0 b7 b6 b5 b4

A (0)

00H 01H

5 9

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.6 GENERAL REGISTER POINTER (RP)

General register pointer (RP) is used to specify the bank and the row address of the general register. (See

Chapter 7 .)

8.7 PROGRAM STATUS WORD (PSWORD)

8.7.1 Program Status Word Configuration

Figure 8-14 shows the configuration of the program status word.

Figure 8-14. Program Status Word Configuration

As shown in Figure 8-14, the program status word consists of five bits; the least significant bit of system

register address 7EH (RPL) and all four bits of system register address 7FH (PSW).

The program status word is divided into the following 1-bit flags: Binary coded decimal flag (BCD), compare

flag (CMP), carry flag (CY), zero flag (Z), and the index enable flag (IXE).

All the bits are cleared to 0 when it is reset or when it is saved in the interrupt stack register.

b3 b2 b1 b0b3 b2 b1 b0

00

PSWRPL

7FH7EHAddress

Name

Symbol

Bit

Initial value when
reset

Program status

word (PSWORD)

I

X

E
Data

(RP)

B

C

D

C

M

P

C

Y

Z

6 0

µPD17145 SUB-SERIES USER’S MANUAL

8.7.2 Functions of the Program Status Word

The flags of the program status word are used for setting conditions for arithmetic/logical operations and

data transfer instructions and for reflecting the status of operation results. Figure 8-15 shows an outline of

the functions of the program status word.

Figure 8-15. Outline of Functions of the Program Status Word

b3 b2 b1 b0b3 b2 b1 b0

PSWRPL

7FH7EHAddress

Symbol

Bit

I

X

E

Flag
B

C

D

C

M

P

C

Y

Z

Used to specify that index modification be performed on the data

memory address used when a data memory manipulation instruction is

executed.

0: Index modification disabled.

1: Index modification enabled.

Flag Function of PSWORD

IXE

Z

CY

CMP

BCD

Set when the result of an arithmetic operation is 0.

0: Indicates that the result of the arithmetic operation is a value other

 than 0.

1: Indicates that the result of the arithmetic operation is 0.

Set when there is a carry in the result of an addition operation or a

borrow in the result of a subtraction operation.

0: Indicates there was no carry or borrow.

1: Indicates there was a carry or borrow.

Used to specify that the result of an arithmetic operation not be stored in

data memory or the general register but just be reflected in the CY and

Z flags.

0: Results of arithmetic operations are stored.

1: Results of arithmetic operations are not stored.

Used to specify how arithmetic operations are performed.

0: Arithmetic operations are performed in 4-bit binary.

1: Arithmetic operations are performed in BCD.

6 1

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.7.3 Index Enable Flag (IXE)

The IXE flag is used to specify whether index modification is to be performed on the data memory address.

For details, see Section 8.5.1 .

8.7.4 Zero Flag (Z) and Compare Flag (CMP)

The Z flag indicates whether the result of an arithmetic operation is 0. The CMP flag is used to specify

that the result of an arithmetic operation not be stored in data memory or the general register.

Table 8-2 shows how the CMP flag affects the setting and resetting of the Z flag.

Table 8-2. The Zero (Z) Flag and the Compare Flag (CMP)

Conditions CMP = 0 CMP = 1

When arithmetic operation results in 0 Z <– 1 Z flag does not change

When arithmetic operation results in a non-zero value Z <– 0 Z <– 0

The Z flag and the CMP flag are used for comparing values in the general register and data memory. The

Z flag is only affected by arithmetic operations. The CMP flag is only affected by bit evaluation.

Example of 12-bit data comparison

; Is the 12-bit data stored in M001, M002, and M003 equal to 456H?

CMP456:

SET2 CMP, Z

SUB M001, #4 ; The data stored in M001, M002, and M003 is not damaged.

SUB M002, #5

SUB M003, #6

; CLR1 CMP

SKT1 Z ; Resets CMP automatically when the bit test instruction is executed.

BR DIFFER ; • 456H

BR AGREE ; = 456H

8.7.5 Carry Flag (CY)

The CY flag shows whether there is a carry in the result of an addition operation or a borrow in the result

of a subtraction operation.

The CY flag is set (CY = 1) when there is a carry or borrow in the result and reset (CY = 0) when there

is no carry or borrow in the result.

When the RORC r instruction (contents in the general register pointed to by r is shifted right one bit) is

executed, the following occurs: the value in the CY flag just before execution of the instruction is shifted to

the most significant bit of the general register and the least significant bit is shifted to the CY flag.

The CY flag is also useful for when the user wants to skip the next instruction when there is a carry or borrow

in the result of an operation.

The CY flag is only affected by arithmetic operations and rotations. It is not affected by the CMP flag.

6 2

µPD17145 SUB-SERIES USER’S MANUAL

8.7.6 Binary-Coded Decimal Flag (BCD)

The BCD flag is used to specify BCD operations.

When the BCD flag is set (BCD = 1), all arithmetic operations will be performed in BCD. When the BCD

flag is reset (BCD = 0), arithmetic operations are performed in 4-bit binary.

The BCD flag does not affect logical operations, bit evaluation, comparison evaluations or rotations.

8.7.7 Warning Concerning Use of Arithmetic Operations on the Program Status Word

When performing arithmetic operations (addition and subtraction) on the program status word (PSWORD),

the following point should be kept in mind.

When an arithmetic operation is performed on the program status word and the result is stored in the

program status word, the result may be different than anticipated.

Below is an example.

Example MOV PSW, #0001B

ADD PSW, #1111B

When the above instructions are executed, a carry is generated which should cause bit 2 (CY

flag) of PSW to be set. However, the result of the operation (0000B) is stored in PSW, meaning

that CY does not get set.

6 3

CHAPTER 8 SYSTEM REGISTER (SYSREG)

8.8 WARNINGS CONCERNING USE OF THE SYSTEM REGISTER

8.8.1 Reserved Words for Use with the System Register

Because the system register is allocated in data memory, it can be used in any of the data memory

manipulation instructions. As shown in Example 1 (using a 17K Series Assembler), because a data memory

address can not be directly specified in an instruction operand, it needs to be defined as a symbol beforehand.

The system register is data memory, but has specialized functions which make it different from general-

purpose data memory. Because of this, the system register is used by defining it beforehand with symbols

(used as reserved words) in the assembler (AS17K).

Reserved words for use with the system register are allocated in address locations 74H to 7FH. They are

defined by the symbols (AR3, AR2, ..., PSW) shown in Figure 8-2 .

As shown in Example 2, if these reserved words are used, it is not necessary to define symbols.

For information concerning reserved words, see Chapter 21 .

Example 1. MOV 34H, #0101B ; Using a data memory address like 34H or 76H will

MOV 76H, #1010B ; cause an error in the assembler.

M037 MEM 0.37H ; Addresses in general data memory need to be

MOV M037, #0101B ; defined as symbols using the MEM pseudo

; instruction.

2. MOV AR1, #1010B ; By using the reserved word AR1 (address 76H),

; there is no need to define the address as a symbol.

; Reserved word AR1 is defined in a device with

; the pseudo instruction “AR1 MEM 0.76H”).

Assembler AS17K has the below flag symbol handling instructions defined internally as macros.

SETn : Set a flag to 1

CLRn : Reset a flag to 0

SKTn : Skip when all flags are 1

SKFn : Skip when all flags are 0

NOTn : Invert a flag

INITFLG : Initialize a flag

By using these macro instructions, data memory can be handled as flags as shown below in Example 3.

The functions of the program status word and the memory pointer enable flag are defined in bit units (flag

units) and each bit has a reserved word (BCD, CMP, CY, Z, IXE, or MPE) defined for it.

If these flag reserved words are used, the incorporated macro instructions can be used as shown in

Example 4.

6 4

µPD17145 SUB-SERIES USER’S MANUAL

Example 3. F0003 FLG 0.00.3 ; Flag symbol definition

SET1 F0003 ; Incorporated macro

 Expanded macro

OR .MF.F0003 SHR 4, #.DF.F0003 AND 0FH

; Set bit 3 of address 00H of BANK0

4. SET1 BCD ; Incorporated macro

 Expanded macro

OR .MF.BCD SHR 4, #.DF.BCD AND 0FH

; Set the BCD flag

; BCD is defined as “BCD FLG 0.7EH.0”

CLR2 Z, CY ; Identical address flag

 Expanded macro

AND .MF.Z SHR 4, #.DF. (NOT (Z OR CY) AND 0FH)

CLR2 Z, BCD ; Different address flag

 Expanded macro

AND .MF.Z SHR 4, #.DF. (NOT Z AND 0FH)

AND .MF.BCD SHR 4, #.DF. (NOT BCD AND 0FH)

8.8.2 Notes on Handling of System Register Addresses Fixed at 0

In dealing with system register area fixed at 0 (see Figure 8-2), there are a few points for which caution

should be taken with regard to device, emulator and assembler operation.

Items (1), (2) and (3) explain these points.

(1) Device operation

Trying to write data to an address fixed at 0 will not change the value (0) at that address. Any attempt

to read an address fixed at 0 will result in the value 0 being read.

(2) When using a 17K series in-circuit emulator (IE-17K or IE-17K-ET)

An error will be generated if a write instruction attempts to write the value 1 to an address fixed at 0.

The type of instructions shown below will cause the in-circuit emulator to generate an error.

6 5

CHAPTER 8 SYSTEM REGISTER (SYSREG)

Example 1. MOV BANK, #0100B ; Attempts to write the value 1 to bit 2 (an address fixed at 0).

2. MOV IXL, #1111B ;

MOV IXM, #0111B ;

ADD IXL, #1 ;

ADDC IXM, #0 ;

However, when all valid bits are set to 1 as shown in Example 2, executing the instructions INC AR or

INC IX will not cause an error to be generated by the in-circuit emulator. This is because when all valid

bits of the address register and index register are set to 1, executing the INC instruction causes all bits

to be set to 0.

The only time the in-circuit emulator will not generate an error when an attempt is made to write the value

1 to the data fixed at 0 is when the address being written to is in the address register.

(3) When using a 17K series assembler

No error is output when an attempt is made to write the value 1 to the data fixed at 0. The instruction

shown in Example 1

MOV BANK, #0100B

will not cause an assembler error. However, when the instruction is executed in the in-circuit emulator,

an error is generated.

The assembler does not generate an error because it does not judge the correspondence between

symbols (including reserved words) and data memory addresses used by data memory manipulation

instructions.

The assembler generates an error when the value n in the incorporated macro BANKn is a value greater

than or equal to 1.

This is because the assembler judges that incorporated macro instructions other than BANK0 cannot be

used in the µPD17145 sub-series.

6 6

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

6 7

CHAPTER 9 REGISTER FILE (RF)

CHAPTER 9 REGISTER FILE (RF)

The register file is a register used mainly for specifying conditions for peripheral hardware.

9.1 REGISTER FILE CONFIGURATION

9.1.1 Configuration of the Register File

Figure 9-1 shows the configuration of the register file.

As shown in Figure 9-1, the register file is a register consisting of 128 nibbles (128 x 4 bits).

In the same way as with data memory, the register file is divided into addresses in units of four bits. It has

a total of 128 nibbles specified in row addresses from 0H to 7H and column addresses from 0H to 0FH.

Address locations 00H to 3FH define an area called the control register.

Figure 9-1. Register File Configuration

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

Register file

Control register

9

6 8

µPD17145 SUB-SERIES USER’S MANUAL

9.1.2 Relationship between the Register File and Data Memory

Figure 9-2 shows the relationship between the register file and data memory.

As shown in Figure 9-2, the register file overlaps with data memory at addresses 40H to 7FH.

This means that a program identifies register file addresses 40H to 7FH also as data memory addresses

40H to 7FH.

Figure 9-2. Relationship Between the Register File and Data Memory

Register file

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column address

R
ow

 a
dd

re
ss

0

1

2

3

Data memory

Control register

Port register
System register

BANK0

6 9

CHAPTER 9 REGISTER FILE (RF)

9.2 FUNCTIONS OF THE REGISTER FILE

9.2.1 Functions of the Register File

The register file is a collection of registers in which peripheral hardware conditions are set with the PEEK

instruction or POKE instruction.

The register used to control the peripheral hardware is located at addresses 00H to 3FH. This area is called

the control register.

Addresses 40H to 7FH of the register file constitute normal data memory. Thus, not only the MOV

instruction, but also the PEEK and POKE instructions, can be used to enable this part to perform read and

write operations.

9.2.2 Control Register Functions

The peripheral hardware whose conditions can be controlled by control registers is listed below.

For details concerning peripheral hardware and the control register, see the section for the peripheral

hardware concerned.

• Ports

• 8-bit timer counter (TM0, TM1)

• Basic interval timer (BTM)

• A/D converter

• Serial interface (SIO)

• Interrupt function

• Stack pointer (SP)

9.2.3 Register File Manipulation Instructions

Reading and writing data from and to the register file is done using the window register (WR: address 78H)

located in the system register.

Reading and writing of data is performed using the following dedicated instructions:

PEEK WR, rf: Read the data in the address specified by rf and put it into WR.

POKE rf, WR: Write the data in WR into the address specified by rf.

Below is an example of register file operation.

Example RF02 MEM 0.82H ; Symbol definition

RF1F MEM 0.9FH ; Register file addresses 00H to 3FH must be defined

; with symbols

RF53 MEM 0.53H ; as BANK0 addresses 80H to BFH.

RF6D MEM 0.6DH ; See Section 9.4 for details.

RF70 MEM 1.70H ;

RF71 MEM 1.71H ;

; BANK0

<1> PEEK WR, RF02 ;

<2> POKE RF1F, WR ;

<3> PEEK WR, RF53 ;

<4> POKE RF6D, WR ;

7 0

µPD17145 SUB-SERIES USER’S MANUAL

Figure 9-3 shows an example of register file operation.

As shown in Figure 9-3, reading and writing of data to and from the control register (address locations 00H

to 3FH) is performed using the PEEK WR, rf and POKE rf, WR instructions. Data within the control register

specified using rf can be read from and written to the control register, only by using these instructions with

the window register.

The fact that the register file overlaps with data memory in addresses 40H to 7FH has the following effect:

When a PEEK WR, rf or POKE rf, WR instruction is executed, the effect is the same as if they were being

executed on the data memory address specified by rf.

Addresses 40H to 7FH of the register file can be operated by normal memory manipulation instructions.

Figure 9-3. Accessing the Register File Using the PEEK and POKE Instructions

0 F1 2 3 4 5 6 7 8 9 A B C D E

0

7

1

2

3

4

5

6

Column address

Data memory (BANK0)

Port register
System register

Register file

Control register

R
ow

 a
dd

re
ss

0

1

2

3

<1> PEEK WR, RF02

<3> PEEK WR, RF53

<4> POKE RF6D, WR

<2> POKE RF1F, WR

WR

7 1

CHAPTER 9 REGISTER FILE (RF)

9.3 CONTROL REGISTER

9.3.1 Control Register Configuration

The control register consists of 64 nibbles (64 x 4 bits) allocated in register file address locations 00H to

3FH.

However, only 25 nibbles are actually used. The remaining 39 nibbles are allocated for registers which

have not yet been implemented. Data should not be read from or written to this area.

There are two types of registers, both of which occupy one nibble of memory. One type is read/write

(R/W), and the other is read-only (R).

Note that within the read/write (R/W) flags, there exists a flag that will always be read as 0.

The following read/write (R/W) flags are those flags which will always be read as 0:

• WDTRES (RF: 03H, bit 3)

• WDTEN (RF: 03H, bit 0)

• TM0RES (RF: 11H, bit 2)

• TM1RES (RF: 12H, bit 2)

• BTMRES (RF: 13H, bit 2)

• ADCSTRT (RF: 20H, bit 0)

Within the four bits of data in a nibble, there are bits which are fixed at 0 and will therefore always be read

as 0. These bits remain fixed at 0 even when an attempt is made to write to them.

Attempting to read data in the unused register address area (39 nibbles) will yield unpredictable values.

In addition, attempting to write to this area has no effect.

See Figure 21-2 for the configuration of the control registers.

7 2

µPD17145 SUB-SERIES USER’S MANUAL

9.4 WARNINGS CONCERNING USE OF THE REGISTER FILE

9.4.1 Warnings Concerning Operation of the Control Register (Read-Only and Unused Registers)

It is necessary to take note of the following warnings concerning device operation and use of the 17K Series

assembler and in-circuit emulator (IE-17K or IE-17K-ET) with regard to the read-only (R) and unused registers

in the control register (register file address locations 00H to 3FH).

(1) Device operation

Writing to a read-only register has no effect.

Attempting to read data from an address in the unused data area will yield an unpredictable value.

Attempting to write to an address in the unused data area has no effect.

(2) During use of the assembler

An error will be generated if an attempt is made to write to a read-only register.

An error will also be generated if an attempt is made to read from or write to an address in the unused

data area.

(3) During use of the in-circuit emulator (IE-17K or IE-17K-ET) (operation during patch processing and

similar operations)

Attempting to write to a read-only register has no effect. Also note that no error is generated.

Attempting to read data from an address in the unused data area will yield an unpredictable value.

Attempting to write to an address in the unused data area has no effect. No errors are generated.

9.4.2 Register File Symbol Definitions and Reserved Words

Attempting to use a numerical value in a 17K Series assembler to specify a register file address in the rf

operand of the PEEK WR, rf or POKE rf, WR instruction will cause an error to be generated.

Therefore, as shown in Example 1, register file addresses need to be defined beforehand as symbols.

Example 1. Case which causes an error to be generated

PEEK WR, 02H ;

POKE 21H, WR ;

Case in which no error is generated

RF71 MEM 0.71H ; Symbol definition

PEEK WR, RF71 ;

Caution should especially be taken with regard to the following point:

• When using a symbol to define the control register as an address in data memory, it needs to be defined

as addresses 80H to BFH of BANK0.

Since the control register is manipulated using the window register, any attempt to manipulate the control

register other than by using the PEEK and POKE commands needs to cause an error to be generated in the

assembler.

7 3

CHAPTER 9 REGISTER FILE (RF)

*

However, note that any address in the area of the register file overlapping with data memory (address

locations 40H to 7FH) can be defined as a symbol in the same manner as with normal data memory.

An example is given below.

Example 2. RF71 MEM 0.71H ; Address in register file overlapping with data memory

RF02 MEM 0.82H ; Control register

PEEK WR, RF71 ; RF71 becomes address 71H in data memory.

PEEK WR, RF02 ; RF02 becomes address 02H in the control register.

The assembler (AS17K) has the below flag symbol handling instructions defined internally as macros.

SETn : Set a flag to 1

CLRn : Reset a flag to 0

SKTn : Skip when all flags are 1

SKFn : Skip when all flags are 0

NOTn : Invert a flag

INITFLG: Initialize a flag (in units of 4 bits)

By using these incorporated macro instructions, the contents of the register file can be manipulated one

bit at a time.

Due to the fact that most of control register consists of 1-bit flags, the assembler has reserved words

(predefined symbols) for use with these flags.

However, note that the control register has no reserved word for the stack pointer for its use as a flag. The

reserved word used for the stack pointer is the reserved word SP, for its use as data memory. For this reason,

none of the flag manipulation instructions using reserved words can be used with the stack pointer.

7 4

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

7 5

CHAPTER 10 DATA BUFFER (DBF)

CHAPTER 10 DATA BUFFER (DBF)

The data buffer consists of four nibbles allocated in addresses 0CH to 0FH in BANK0.

The data buffer acts as a data storage area for the CPU peripheral hardware (address register, serial

interface, timer 0, timer 1, and A/D converter) through use of the GET and PUT instructions. It also acts as

data storage used for receiving and transferring data. By using the MOVT DBF, @AR instruction, fixed data

in program memory can be read into the data buffer.

10.1 DATA BUFFER CONFIGURATION

Figure 10-1 shows the allocation of the data buffer in data memory.

As shown in Figure 10-1, the data buffer is allocated in address locations 0CH to 0FH in data memory and

consists of four nibbles (4 x 4 bits).

Figure 10-1. Allocation of the Data Buffer

Figure 10-2 shows the configuration of the data buffer. As shown in Figure 10-2, the data buffer is made

up of sixteen bits with its least significant bit in bit 0 of address 0FH and its most significant bit in bit 3 of address

0CH.

10

0 1 2 3 4 5 6 7 8 9 A B C

Data buffer

(DBF)

E F

0

1

2

3

4

5

6

7

Column address

Data memory

System register (SYSREG)

R
ow

 a
dd

re
ss

D

BANK0

7 6

µPD17145 SUB-SERIES USER’S MANUAL

Figure 10-2. Data Buffer Configuration

Because the data buffer is allocated in data memory, it can be used in any of the data memory manipulation

instructions. Upon reset, all 16 bits are undefined.

10.2 FUNCTIONS OF THE DATA BUFFER

The data buffer has two separate functions.

The data buffer is used for data transfer with peripheral hardware. The data buffer is also used for reading

constant data in program memory. Figure 10-3 shows the relationship between the data buffer and peripheral

hardware.

Figure 10-3. Relationship between the Data Buffer and Peripheral Hardware

b3 b2 b1 b0b3 b2 b1 b0

0DH0CHAddress

Data

Data buffer

b3 b2 b1 b0b3 b2 b1 b0

0FH0EH

b11 b10 b9 b8b15 b14 b13 b12 b3 b2 b1 b0b7 b6 b5 b4

Data memory

BANK0 Bit

Bit

Symbol

Data

M
S
B

L
S
B

^

^

^

^

DBF3 DBF2 DBF1 DBF0

Data buffer
(DBF)

Internal bus

Constant data

Program memory (ROM)

Peripheral
address

01H

02H

03H

04H

Peripheral hardware

Shift register (SIOSFR)

Timer 0 modulo register
(TM0M)

Timer 1 modulo register
(TM1M)

Address register (AR)40H

A/D converter data register
(ADCR)

45H Timer 0/timer 1 count
register (TM0TM1C)

7 7

CHAPTER 10 DATA BUFFER (DBF)

10.2.1 Data Buffer and Peripheral Hardware

Table 10-1 shows data transfer with peripheral hardware using the data buffer.

Each unit of peripheral hardware has an individual address (called its peripheral address). By using this

peripheral address and instructions GET and PUT, data can be transferred between each unit of peripheral

hardware and the data buffer.

Instruction Operation

GET DBF, p Read the data in the peripheral hardware address specified by p into the data buffer.

PUT p, DBF Write the data in the data buffer to the peripheral hardware address specified by p.

There are three types of peripheral hardware units: read/write, write-only and read-only.

The following describes what happens when a GET instruction is used with write-only hardware and when

a PUT instruction is used with read-only hardware.

• Reading (GET) from write-only peripheral hardware will yield an unpredictable value.

• Writing (PUT) to read-only peripheral hardware has no effect (same as a NOP instruction).

Table 10-1. Peripheral Hardware

(1) Peripheral hardware with input/output in 8-bit units

Peripheral address Name Peripheral hardware
Direction of data

Actual bit length
PUT GET

01H SIOSFR SIO shift register o o 8 bits

02H TM0M Timer 0 modulo register o x 8 bits

03H TM1M Timer 1 modulo register o x 8 bits

04H ADCR A/D converter data register o o 8 bits

(2) Peripheral hardware with input/output in 16-bit units

Peripheral address Name Peripheral hardware
Direction of data

Actual bit length
PUT GET

40H AR Address register o o 10 bits
(µPD17145)

11 bits
(µPD17147)

12 bits
µPD17149

µPD17P149

45H TM0TM1C Timer 0/timer 1 count register x o 16 bits

7 8

µPD17145 SUB-SERIES USER’S MANUAL

10.2.2 Data Transfer with Peripheral Hardware

Data can be transferred between the data buffer and peripheral hardware in 8- or 16-bit units. Instruction

cycle for a single PUT or GET instruction is the same regardless of whether eight or sixteen bits are being

transferred.

Example 1. PUT instruction (when the actual bits in peripheral hardware are the eight bits from

7 to 0)

When only eight bits of data are being written from the data buffer, the upper eight bits of

the data buffer (DBF3, DBF2) are irrelevant.

Example 2. GET instruction (when the actual bits in peripheral hardware are the eight bits from

7 to 0)

When only eight bits of data are being read into the data buffer, the values in the upper eight

bits of the data buffer (DBF3, DBF2) remain unchanged.

DBF3 DBF2 DBF1 DBF0
Retained Retained

b7 b0

GET

Data buffer
b3 b2 b1 b0b6 b5 b4b7

Actual bits
Peripheral hardware register

b3 b2 b1 b0b6 b5 b4b7

DBF3 DBF2 DBF1 DBF0
Don't care Don't care

b0b7

Actual bits
Peripheral hardware register

PUT

Data buffer

7 9

CHAPTER 10 DATA BUFFER (DBF)

10.2.3 Table Reference

By using the MOVT instruction, constant data in program memory (ROM) can be read into the data buffer.

The MOVT instruction is explained below.

MOVT DBF, @AR: The contents of the program memory being pointed to by the address register (AR)

is read into the data buffer (DBF).

DBF3 DBF2 DBF1 DBF0

16 bits

MOVT DBF, @AR

Data buffer

b15

Program memory (ROM)

b0

8 0

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

8 1

CHAPTER 11 ALU BLOCK

CHAPTER 11 ALU BLOCK

The ALU is used for performing arithmetic operations, logical operations, bit evaluations, comparison

evaluations, and rotations on 4-bit data.

11.1 ALU BLOCK CONFIGURATION

Figure 11-1 shows the configuration of the ALU block.

As shown in Figure 11-1, the ALU block consists of the main 4-bit data processor, temporary registers A

and B, the status flip-flop for controlling the status of the ALU, and the decimal conversion circuit for use during

arithmetic operations in BCD.

As shown in Figure 11-1, the status flip-flop consists of the following flags: Zero flag flip-flop, carry flag

flip-flop, compare flag flip-flop, and the BCD flag flip-flop.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD:

addresses 7EH, 7FH) located in the system register. The flags in the program status word are the following:

Zero flag (Z), carry flag (CY), compare flag (CMP), and the BCD flag (BCD).

11.2 FUNCTIONS OF THE ALU BLOCK

Arithmetic operations, logical operations, bit evaluations, comparison evaluations, and rotations are

performed using the instructions in the ALU block. Table 11-1 lists each arithmetic/logical instruction,

evaluation instruction, and rotation instruction.

By using the instructions listed in Table 11-1, 4-bit arithmetic/logical operations, evaluations and rotations

can be performed in a single instruction. Arithmetic operations in decimal can also be performed in a single

instruction.

11.2.1 Functions of the ALU

The arithmetic operations consist of addition and subtraction. Arithmetic operations can be performed on

the contents of the general register and data memory or on immediate data and the contents of data memory.

Operations in binary are performed on four bits of data and operations in decimal are performed on one place

(BCD operation).

Logical operations include ANDing, ORing, and XORing. Their operands can be general register contents

and data memory contents, or data memory contents and immediate data.

Bit evaluation is used to determine whether bits in 4-bit data in data memory are 0 or 1.

Comparison evaluation is used to compare contents of data memory with immediate data. It is used to

determine whether one value is equal to or greater than the other, less than the other, or if both values are

equal or not equal.

Rotation is used to shift 4-bit data in the general register one bit in the direction of its least significant bit

(rotation to the right).

11

8 2

µPD17145 SUB-SERIES USER’S MANUAL

Table 11-1. List of ALU Instructions (1/2)

ALU function Instruction Operation Explanation

Arithmetic Addition ADD r, m (r) <– (r) + (m) Adds contents of general register and data memory.
operations Result is stored in general register.

ADD m, (m) <– (m) + n4 Adds immediate data to contents of data memory.
#n4 Result is stored in data memory.

ADDC r, m (r) <– (r) + (m) Adds contents of general register, data memory and
+ CY CY flag. Result is stored in general register.

ADDC m, (m) <– (m) + n4 Adds immediate data, contents of data memory and
#n4 + CY CY flag. Result is stored in data memory.

Sub- SUB r, m (r) <– (r) – (m) Subtracts contents of data memory from contents of
traction general register. Result is stored in general register.

SUB m, (m) <– (m) – n4 Subtracts immediate data from data memory.
#n4 Result is stored in data memory.

SUBC r, (r) <– (r) – (m) – CY Subtracts contents of data memory and CY flag
m from contents of general register. Result is stored in

general register.

SUBC m, (m) <– (m) – n4 – CY Subtracts immediate data and CY flag from data
#n4 memory. Result is stored in data memory.

Logical Logical OR r, m (r) <– (r) (m) OR operation is performed on contents of general
operations OR register and data memory. Result is stored in

general register.

OR m, (m) <– (m) n4 OR operation is performed on immediate data and
#n4 contents of data memory. Result is stored in data

memory.

Logical AND r, m (r) <– (r) (m) AND operation is performed on contents of general
AND register and data memory. Result is stored ingeneral

register.

AND m, (m) <– (m) n4 AND operation is performed on immediate data and
#n4 contents of data memory. Result is stored in data

memory.

Logical XOR r, m (r) <– (r) (m) XOR operation is performed on contents of general
XOR register and data memory. Result is stored ingeneral

register.

XOR m, (m) <– (m) n4 XOR operation is performed on immediate data and
#n4 contents of data memory. Result is stored in data

memory.

Bit True SKT m, CMP <– 0, if(m) Skips next instruction if all bits in data memory
evaluation #n n = n, then skip specified by n are TRUE (1). Result is not stored.

False SKF m, CMP <– 0, if(m) Skips next instruction if all bits in data memory
#n n = 0, then skip specified by n are FALSE (0). Result is not stored.

Comparison Equal SKE m, (m) – n4, skip Skips next instruction if immediate data equals
evaluation #n4 if zero contents of data memory. Result is not stored.

Not SKNE m, (m) – n4, skip Skips next instruction if immediate data is not equal
equal #n4 if not zero to contents of data memory. Result is not stored.

• SKGE m, (m) – n4, skip Skips next instruction if contents of data memory
#n4 if not borrow is greater than or equal to immediate data.

Result is not stored.

< SKLT m, (m) – n4, skip Skips next instruction if contents of data memory
#n4 if borrow is less than immediate data. Result is not stored.

Rotation Rotate RORC r Rotate contents of the general register along with
to the the CY flag to the right. Result is stored in general
right register.

CY (r)b3 (r)b2

(r)b0 (r)b1

8 3

CHAPTER 11 ALU BLOCK

Table 11-1. List of ALU Instructions (2/2)

ALU function Operation depending on the program status word (PSWORD)

Value in

BCD flag

Value in

CMP flag

Operation Z flag

0 0
Store result of

binary operation

Set (1) when result of operation

is 0000B, otherwise reset (0).

0 1
Do not store

result of binary

operation

Status maintained when result

of operation is 0000B, otherwise

reset (0).

1 0
Store result of

BCD operation

Set (1) when result of operation

is 0000B, otherwise reset (0).

1 1
Do not store

result of BCD

operation

Status maintained when result

of operation is 0000B, otherwise

reset (0).

Don’t care

(maintained)
Don’t care

(maintained)
No change

Don’t care

(maintained)

CY flag

Don’t care

(maintained)

Reset No change
Don’t care

(maintained)

Don’t care

(maintained)

Don’t care

(maintained)

No change Don’t care

(maintained)

Don’t care

(maintained)

Don’t care

(maintained)

No change Don’t care

(maintained)

Set (1)

when

carry or

borrow is

generated,

otherwise

reset (0).

Arithmetic operation

Rotation

Comparison

evaluation

Bit evaluation

Logical operations

Modifica-

tion by

IXE = 1

Yes

Yes

Yes

Yes

Yes

Don't care

(main-

tained)

Don't care

(main-

tained)

Don't care

(main-

tained)

Value in b0

of the gen-

eral register

8 4

µPD17145 SUB-SERIES USER’S MANUAL

Figure 11-1. Configuration of the ALU

11.2.2 Functions of Temporary Registers A and B

Temporary registers A and B are needed for processing of 4-bit data. These registers are used for temporary

storage of the first and second data operands of an instruction.

Data bus

Temporary
register A

Temporary
register B

Status
flip-flop

ALU
• Arithmetic operations
• Logical operations
• Bit evaluations
• Comparison
 evaluations
• Rotations

Decimal con-
version circuit

7EH

b0

BCD

b3 b2 b1 b0

CMP CY Z IXE

7FH

Program status word

(PSWORD)

Address

Name

Bit

Flag

Status flip-flop

BCD

flag

flip-flop

CMP

flag

flip-flop

CY

flag

flip-flop

Z

flag

flip-flop

Function outline

Indicates when the result of an arithmetic

operation is 0.

Stores the borrow or carry from an arithmetic

operation.

Used to indicate whether to store the result

of an arithmetic operation.

Used to indicate whether to perform

decimal correction for arithmetic operations.

8 5

CHAPTER 11 ALU BLOCK

11.2.3 Functions of the Status Flip-flop

The status flip-flop is used for controlling operation of the ALU and for storing data which has been

processed. Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD)

located in the system register. This means that when a flag in the system register is manipulated it is the

same as manipulating a flag in the status flip-flop. Each flag in the program status word is described below.

(1) Z flag

This flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0). However,

as described below, depending on the status of the CMP flag, the conditions which cause this flag to be

set (1) can be changed.

(i) When CMP = 0

Z flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0).

(ii) When CMP = 1

The previous state of the Z flag is maintained when the result of an arithmetic operation is 0000B,

otherwise it is reset (0). Only affected by arithmetic operations.

(2) CY flag

This flag is set (1) when a carry or borrow is generated in the result of an arithmetic operation, otherwise

it is reset (0).

When an arithmetic operation is being performed using a carry or borrow, the operation is performed using

the CY flag as the least significant bit.

When a rotation (RORC instruction) is performed, the contents of the CY flag becomes the most significant

bit (bit b3) of the general register and the least significant bit of the general register is stored in the CY

flag.

Only affected by arithmetic operations and rotations.

(3) CMP flag

When the CMP flag is set (1), the result of an arithmetic operation is not stored in either the general register

or data memory.

When the bit evaluation instruction is performed, the CMP flag is reset (0).

The CMP flag does not affect comparison evaluations, logical operations, or rotations.

(4) BCD flag

When the BCD flag is set (1), decimal correction is performed for all arithmetic operations. When the flag

is reset (0), all operations are performed in 4-bit binary.

The BCD flag does not affect logical operations, bit evaluations, comparison evaluations, or rotations.

These flags can also be set through direct manipulation of the values in the program status word (PSWORD).

When the flags in the program status word are manipulated, the corresponding flag in the status flip-flop is

also manipulated.

8 6

µPD17145 SUB-SERIES USER’S MANUAL

11.2.4 Performing Operations in 4-Bit Binary

When the BCD flag is set to 0, arithmetic operations are performed in 4-bit binary.

11.2.5 Performing Operations in BCD

When the BCD flag is set to 1, decimal correction is performed for arithmetic operations performed in 4-

bit binary. Table 11-2 shows the differences in the results of operations performed in 4-bit binary and in BCD.

When the result of an addition after decimal correction is equal to or greater than 20, or the result of a

subtraction after decimal correction is outside of the range –10 to +9, a value of 1010B (0AH) or higher is

stored as the result (shaded area in Table 11-2).

Table 11-2. Results of Arithmetic Operations Performed in 4-Bit Binary and BCD

Oper- Addition in 4-bit binary Addition in BCD Oper- Subtraction in 4-bit binary Subtraction in BCD
ation ation
result CY Operation result CY Operation result result CY Operation result CY Operation result

0 0 0000 0 0000 0 0 0000 0 0000

1 0 0001 0 0001 1 0 0001 0 0001

2 0 0010 0 0010 2 0 0010 0 0010

3 0 0011 0 0011 3 0 0011 0 0011

4 0 0100 0 0100 4 0 0100 0 0100

5 0 0101 0 0101 5 0 0101 0 0101

6 0 0110 0 0110 6 0 0110 0 0110

7 0 0111 0 0111 7 0 0111 0 0111

8 0 1000 0 1000 8 0 1000 0 1000

9 0 1001 0 1001 9 0 1001 0 1001

10 0 1010 1 0000 10 0 1010 1 1100

11 0 1011 1 0001 11 0 1011 1 1101

12 0 1100 1 0010 12 0 1100 1 1110

13 0 1101 1 0011 13 0 1101 1 1111

14 0 1110 1 0100 14 0 1110 1 1100

15 0 1111 1 0101 15 0 1111 1 1101

16 1 0000 1 0110 –16 1 0000 1 1110

17 1 0001 1 0111 –15 1 0001 1 1111

18 1 0010 1 1000 –14 1 0010 1 1100

19 1 0011 1 1001 –13 1 0011 1 1101

20 1 0100 1 1110 –12 1 0100 1 1110

21 1 0101 1 1111 –11 1 0101 1 1111

22 1 0110 1 1100 –10 1 0110 1 0000

23 1 0111 1 1101 –9 1 0111 1 0001

24 1 1000 1 1110 –8 1 1000 1 0010

25 1 1001 1 1111 –7 1 1001 1 0011

26 1 1010 1 1100 –6 1 1010 1 0100

27 1 1011 1 1101 –5 1 1011 1 0101

28 1 1100 1 1010 –4 1 1100 1 0110

29 1 1101 1 1011 –3 1 1101 1 0111

30 1 1110 1 1100 –2 1 1110 1 1000

31 1 1111 1 1101 –1 1 1111 1 1001

8 7

CHAPTER 11 ALU BLOCK

11.2.6 Performing Operations in the ALU Block

When arithmetic operations, logical operations, bit evaluations, comparison evaluations or rotations in a

program are executed, the first data operand is stored in temporary register A and the second data operand

is stored in temporary register B.

The first data operand is four bits of data used to specify the contents of an address in the general register

or data memory. The second data operand is four bits of data used to either specify the contents of an address

in data memory or to be used as an immediate value. For example, in the instruction

ADD r, m

Second data operand

First data operand

the first data operand, r, is used to specify the contents of an address in the general register. The second

data operand, m, is used to specify the contents of an address in data memory. In the instruction

ADD m, #n4

the first data operand, m, is used to specify an address in data memory. The second operand, #n4, is

immediate data. In the rotation instruction

RORC r

only the first data operand, r (used to specify the contents of an address in the general register) is used.

Next, using the data stored in temporary registers A and B, the ALU executes the operation specified by

the instruction (arithmetic operation, logical operation, bit evaluation, comparison evaluation, or rotation).

When the instruction being executed is an arithmetic operation, logical operation, or rotation, the data

processed by the ALU is stored in the location specified by the first data operand (general register address

or data memory address) and the operation terminates. When the instruction being executed is a bit evaluation

or comparison evaluation, the result processed by the ALU is used to determine whether or not to skip the

next instruction (whether to treat next instruction as an NOP instruction) and the operation terminates.

Caution should be taken with regard to the following points:

(1) Arithmetic operations are affected by the CMP and BCD flags in the program status word.

(2) Logical operations are not affected by the CMP or BCD flag in the program status word. Logical

operations do not affect the Z or CY flags.

(3) Bit evaluation causes the CMP flag in the program status word to be reset.

(4) When an arithmetic operation, logical operation, bit evaluation, comparison evaluation, or rotation is

being executed and the IXE flag in the program status word is set (1), address modification is performed

using the index register.

8 8

µPD17145 SUB-SERIES USER’S MANUAL

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD)

As shown in Table 11-3, arithmetic operations consist of addition, subtraction, addition with carry, and

subtraction with borrow. These instructions are ADD, ADDC, SUB, and SUBC.

The ADD, ADDC, SUB, and SUBC instructions are further divided into addition and subtraction of the

general register and data memory and addition and subtraction of data memory and immediate data. When

the operands r and m are used, addition or subtraction is performed using the general register and data

memory. When the operands m and #n4 are used, addition or subtraction is performed using data memory

and immediate data.

Arithmetic operations are affected by the status flip-flop and the program status word (PSWORD) in the

system register. The BCD flag in the program status word (PSWORD) is used to specify whether arithmetic

operations are to be performed in 4-bit binary or in BCD. The CMP flag is used to specify whether or not the

results of arithmetic operations are to be stored.

Sections 11.3.1 to 11.3.4 explain the relationship between each command and the program status word

(PSWORD).

Table 11-3. Types of Arithmetic Operations

Arithmetic operation Addition Without carry ADD General register and data memory ADD r, m

Data memory and immediate data ADD m, #n4

With carry ADDC General register and data memory ADDC r, m

Data memory and immediate data ADDC m, #n4

Subtraction Without borrow SUB General register and data memory SUB r, m

Data memory and immediate data SUB m, #n4

With borrow SUBC General register and data memory SUBC r, m

Data memory and immediate data SUBC m, #n4

11.3.1 Addition and Subtraction When CMP = 0 and BCD = 0

Addition and subtraction are performed in 4-bit binary and the result is stored in the general register or data

memory.

When the result of the operation is greater than 1111B (carry generated) or less than 0000B (borrow

generated), the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the Z flag is set (1) regardless of whether there is carry or borrow;

otherwise it is reset (0).

11.3.2 Addition and Subtraction When CMP = 1 and BCD = 0

Addition and subtraction are performed in 4-bit binary.

However, because the CMP flag is set (1), the result of the operation is not stored in either the general

register or data memory.

When there is a carry or borrow in the result of the operation, the CY flag is set (1); otherwise it is reset

(0).

When the result of the operation is 0000B, the previous state of the Z flag is maintained; otherwise it is

reset (0).

8 9

CHAPTER 11 ALU BLOCK

11.3.3 Addition and Subtraction When CMP = 0 and BCD = 1

BCD operations are performed.

The result of the operation is stored in the general register or data memory. When the result of the operation

is greater than 1001B (9D) or less than 0000B (0D), the CY flag is set (1), otherwise it is reset (0).

When the result of the operation is 0000B (0D), the Z flag is set (1), otherwise it is reset (0).

Operations in BCD are performed by first computing the result in binary and then by using the decimal

conversion circuit to convert the result to decimal. For information concerning the binary to decimal

conversion, see Table 11-2 in Section 11.2.5 .

In order for operations in BCD to be performed properly, note the following:

(1) Result of an addition must be in the range 0D to 19D.

(2) Result of a subtraction must be in the range 0D to 9D, or in the range –10D to –1D.

The following shows which value is considered the CY flag in the range 0D to 19D (shown in 4-bit binary):

0, 0000B to 1, 0011B

CY CY

The following shows which value is considered the CY flag in the range –10D to –1D (shown in 4-bit

binary):

1, 0110B to 1, 1111B

CY CY

When operations in BCD are performed outside of the limits of (1) and (2) stated above, the CY flag is set

(1) and the result of operation is output as a value greater than or equal to 1010B (0AH).

11.3.4 Addition and Subtraction When CMP = 1 and BCD = 1

BCD operations are performed.

The result is not stored in either the general register or data memory.

In other words, the operations specified by CMP = 1 and BCD = 1 are both performed at the same time.

Example MOV RPL, #0001B; Sets the BCD flag (BCD = 1).

MOV PSW, #1010B; Sets the CMP and Z flag (CMP = 1, Z = 1) and resets the

; CY flag (CY = 0).

SUB M1, #0001B; <1>

SUBC M2, #0010B; <2>

SUBC M3, #0011B; <3>

By executing the instructions in steps numbered <1> , <2>, and <3>, the twelve bits in memory

locations M1, M2, and M3 and the immediate data (321) can be compared in decimal.

9 0

µPD17145 SUB-SERIES USER’S MANUAL

11.3.5 Warnings Concerning Use of Arithmetic Operations

When performing arithmetic operations with the program status word (PSWORD), caution should be taken

with regard to the result of the operation being stored in the program status word.

Normally, the CY and Z flags in the program status word are set (1) or reset (0) according to the result of

the arithmetic operation being executed. However, when an arithmetic operation is performed on the program

status word itself, the result is stored in the program status word. This means that there is no way to determine

if there is a carry or borrow in the result of the operation nor if the result of the operation is zero.

However, when the CMP flag is set (1), results of arithmetic operations are not stored. Therefore, even

in the above case, the CY and Z flags will be properly set (1) or reset (0) according to the result of the operation.

11.4 LOGICAL OPERATIONS

As shown in Table 11-4, logical operations consist of logical OR, logical AND, and logical XOR. Accordingly,

the logical operation instructions are OR, AND, and XOR.

The OR, AND, and XOR instructions can be performed on either the general register and data memory,

or on data memory and immediate data. The operands of these instructions are specified in the same way

as for arithmetic operations (“r, m” or “m, #n4”).

Logical operations are not affected by the BCD or CMP flags in the program status word (PSWORD).

Logical operations do not affect the CY and Z flags. However, when the index enable flag (IXE) is set (1),

index modification is performed using the index register.

Table 11-4. Logical Operations

Logical operation Logical OR General register and data memory OR r, m

Data memory and immediate data OR m, #n4

Logical AND General register and data memory AND r, m

Data memory and immediate data AND m, #n4

Logical XOR General register and data memory XOR r, m

Data memory and immediate data XOR m, #n4

Table 11-5. Table of True Values for Logical Operations

Logical AND Logical OR Logical XOR

C = A AND B C = A OR B C = A XOR B

A B C A B C A B C

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

9 1

CHAPTER 11 ALU BLOCK

11.5 BIT EVALUATIONS

As shown in Table 11-6, there are both TRUE (1) and FALSE (0) bit evaluation instructions. The SKT

instruction skips the next instruction when a bit is evaluated as TRUE (1) and the SKF instruction skips the

next instruction when a bit is evaluated as FALSE (0).

The SKT and SKF instructions can only be used with data memory.

Bit evaluations are not affected by the BCD flag in the program status word (PSWORD) and bit evaluations

do not cause either the CY or Z flags in the program status word (PSWORD) to be set. However, when an

SKT or SKF instruction is executed, the CMP flag is reset (0). When the index enable flag (IXE) is set (1),

index modification is performed using the index register. For information concerning index modification using

the index register, see Chapter 8 .

Sections 11.5.1 and 11.5.2 explain TRUE (1) and FALSE (0) bit evaluations.

Table 11-6. Bit Evaluation Instructions

Bit evaluation TRUE (1) bit evaluation

SKT m, #n

FALSE (0) bit evaluation

SKF m, #n

11.5.1 TRUE (1) Bit Evaluation

The TRUE (1) bit evaluation instruction (SKT m, #n) is used to determine whether or not the bits specified

by n in the four bits of data memory m are TRUE (1). When all bits specified by n are TRUE (1), this instruction

causes the next instruction to be skipped.

Example MOV M1, #1011B

SKT M1, #1011B ; <1>

BR A

BR B

SKT M1, #1101B ; <2>

BR C

BR D

In this example, bits 3, 1, and 0 of data memory M1 are evaluated in step number <1>. Because

all the bits are TRUE (1), the program branches to B. In step number <2>, bits 3, 2, and 0 of

data memory M1 are evaluated. Since bit 2 of data memory M1 is FALSE (0), the program

branches to C.

9 2

µPD17145 SUB-SERIES USER’S MANUAL

11.5.2 FALSE (0) Bit Evaluation

The FALSE (0) bit evaluation instruction (SKF m, #n) is used to determine whether or not the bits specified

by n in the four bits of data memory m are FALSE (0). When all bits specified by n are FALSE (0), this instruction

causes the next instruction to be skipped.

Example MOV M1, #1001B ;

SKF M1, #0110B ; <1>

BR A ;

BR B ;

SKF M1, #1110B ; <2>

BR C ;

BR D ;

In this example, bits 2 and 1 of data memory M1 are evaluated in step number <1>. Because

both bits are FALSE (0), the program branches to B. In step number <2>, bits 3, 2, and 1 of

data memory M1 are evaluated. Since bit 3 of data memory M1 is TRUE (1), the program

branches to C.

9 3

CHAPTER 11 ALU BLOCK

11.6 COMPARISON EVALUATIONS

As shown in Table 11-7, there are comparison evaluation instructions for determining if one value is “equal

to”, “not equal to”, “greater than or equal to”, or “less than” another.

The SKE instruction is used to determine if two values are equal. The SKNE instruction is used to determine

two values are not equal. The SKGE instruction is used to determine if one value is greater than or equal

to another and the SKLT instruction is used to determine if one value is less than another.

The SKE, SKNE, SKGE, and SKLT instructions perform comparisons between a value in data memory and

immediate data. In order to compare values in the general register and data memory, a subtraction instruction

is performed according to the values in the CMP and Z flags in the program status word (PSWORD). For

more information concerning comparison of the general register and data memory, see Section 11.3 .

Comparison evaluations are not affected by the BCD or CMP flags in the program status word (PSWORD)

and comparison evaluations do not cause either the CY or Z flags in the program status word (PSWORD)

to be set.

Sections 11.6.1 to 11.6.4 explain the “equal”, “not equal”, “greater than or equal”, and “less than”

comparison evaluations.

Table 11-7. Comparison Evaluation Instructions

Comparison evaluation Equal

SKE m, #n4

Not equal

SKNE m, #n4

Greater than or equal

SKGE m, #n4

Less than

SKLT m, #n4

9 4

µPD17145 SUB-SERIES USER’S MANUAL

11.6.1 “Equal” Evaluation

The “equal” evaluation instruction (SKE m, #n4) is used to determine if immediate data and the contents

of a location in data memory are equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data

memory are equal.

Example MOV M1, #1010B

SKE M1, #1010B ; <1>

BR A

BR B

;

SKE M1, #1000B ; <2>

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1010B in step

number <1> are equal, the program branches to B. In step number <2>, because the contents

of data memory M1 and immediate data 1000B are not equal, the program branches to C.

11.6.2 “Not Equal” Evaluation

The “not equal” evaluation instruction (SKNE m, #n4) is used to determine if immediate data and the

contents of a location in data memory are not equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data

memory are not equal.

Example MOV M1, #1010B

SKNE M1, #1000B ; <1>

BR A

BR B

;

SKNE M1, #1010B ; <2>

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1000B in step

number <1> are not equal, the program branches to B. In step number <2>, because the

contents of data memory M1 and immediate data 1010B are equal, the program branches to

C.

9 5

CHAPTER 11 ALU BLOCK

11.6.3 “Greater Than or Equal” Evaluation

The “greater than or equal” evaluation instruction (SKGE m, #n4) is used to determine if the contents of

a location in data memory is a value greater than or equal to the value of the immediate data operand. If the

value in data memory is greater than or equal to that of the immediate data, this instruction causes the next

instruction to be skipped.

Example MOV M1, #1000B

SKGE M1, #0111B; <1>

BR A

BR B

;

SKGE M1, #1000B; <2>

BR C

BR D

;

SKGE M1, #1001B; <3>

BR E

BR F

In this example, the program will first branch to B since the value in data memory is larger than

that of the immediate data <1>. Next it will branch to D since the value in data memory is equal

to that of the immediate data <2>. Last it will branch to E since the value in data memory is

less than that of the immediate data <3>.

11.6.4 “Less Than” Evaluation

The “less than” evaluation instruction (SKLT m, #n4) is used to determine if the contents of a location in

data memory is a value less than that of the immediate data operand. If the value in data memory is less

than that of the immediate data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B

SKLT M1, #1001B; <1>

BR A

BR B

;

SKLT M1, #1000B; <2>

BR C

BR D

;

SKLT M1, #0111B; <3>

BR E

BR F

9 6

µPD17145 SUB-SERIES USER’S MANUAL

In this example, the program will first branch to B since the value in data memory is less than

that of the immediate data <1>. Next it will branch to C since the value in data memory is equal

to that of the immediate data <2>. Last it will branch to E since the value in data memory is

greater than that of the immediate data <3>.

11.7 ROTATIONS

There are rotation instructions for rotation to the right and for rotation to the left.

The RORC instruction is used for rotation to the right.

The RORC instruction can only be used with the general register.

Rotation using the RORC instruction is not affected by the BCD or CMP flags in the program status word

(PSWORD) and does not affect the Z flag in the program status word (PSWORD).

Rotation to the left is performed by using the addition instruction ADDC.

Sections 11.7.1 and 11.7.2 explain rotation.

11.7.1 Rotation to the Right

The instruction used for rotation to the right (RORC r) rotates the contents of the general register in the

direction of its least significant bit.

When this instruction is executed, the contents of the CY flag becomes the most significant bit of the general

register (bit 3) and the least significant bit (bit 0) of the general register is placed in the CY flag.

Example 1. MOV PSW, #0100B; Sets CY flag to 1.

MOV R1, #1100B

RORC R1

When these instructions are executed, the following operation is performed.

Basically, when rotation to the right is performed, the following operation is executed:

CY flag –> b3, b3 –> b2, b2 –> b1, b1 –> b0, b0 –> CY flag.

2. MOV PSW, #0000B; Resets CY flag to 0.

MOV R1, #1000B; Most significant bit

MOV R2, #0100B

MOV R3, #0010B; Least significant bit

RORC R1

RORC R2

RORC R3

The program code above rotates the 13 bits in CY, R1, R2, and R3 to the right.

11 1 0 0
CY flag b3 b2 b1 b0

*

*

9 7

CHAPTER 11 ALU BLOCK

11.7.2 Rotation to the Left

Rotation to the left is performed by using the addition instruction, “ADDC r, m”.

Example MOV PSW, #0000B; Resets CY flag to 0.

MOV R1, #1000B; Most significant bit

MOV R2, #0100B

MOV R3, #0010B; Least significant bit

ADDC R3, R3

ADDC R2, R2

ADDC R1, R1

SKF1 CY

OR R3, #0001B

The program code above rotates the 13 bits in CY, R1, R2, and R3 to the left.

*

9 8

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

99

CHAPTER 12 PORTS

CHAPTER 12 PORTS

12.1 PORT 0A (P0A 0, P0A1, P0A2, P0A3)

Port 0A is a 4-bit input/output port with an output latch. It is mapped into address 70H of BANK0 in data

memory. The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/output is specified by P0AGIO (bit 0 at address 2CH)

in the register file.

When P0AGIO is 0, each pin of port 0A is used as input port. If a read instruction is executed for the port

register, pin statuses are read.

When P0AGIO is 1, each pin of port 0A is used as output port and the contents written in the output latch

are output to pins. If a read instruction is executed when pins are output ports, the contents of the output

latch, rather than pin statuses, are fetched.

Port 0A contains a software controlled pull-up resistor. P0AGPU (bit 0 at address 0CH) of the register file

is used to determine whether port 0A contains the pull-up resistor. When P0AGPU is 1, all 4-bit pins are pulled

up. If P0AGPU is 0, the pull-up resistor is not contained.

At reset, P0AGIO and P0AGPU are set to 0 and all P0A pins become input ports without a pull-up resistor.

The contents of the port output latch are 0.

Table 12-1. Writing into and Reading from the Port Register (0.70H)

P0AGIO Pin input/output BANK0 70H

RF: 2CH, bit 0 Write Read

0 Input Possible P0A pin status

1 Output Write to the P0A latch Data in P0A latch

12

100

µPD17145 SUB-SERIES USER’S MANUAL

12.2 PORT 0B (P0B0, P0B1, P0B2, P0B3)

Port 0B is a 4-bit input/output port with an output latch. It is mapped into address 71H of BANK0 in data

memory. The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/ output is specified by P0BGIO (bit 1 at address 2CH)

in the register file.

When P0BGIO is 0, all pins of port 0B are used as input ports. If a read instruction is executed for the port

register, pin statuses are read.

When P0BGIO is 1, all pins of port 0B are used as output ports. The contents written in the output latch

are output to pins. If a read instruction is executed when pins are used as output ports, the contents of the

output latch, rather than pin statuses, are fetched.

Port 0B contains a software controlled pull-up resistor. P0BGPU (bit 1 at address 0CH) is used to determine

whether or not port 0B contains a pull-up resistor. When P0BGPU is 1, all 4-bit pins are pulled up. When

P0BGPU is 0, a pull-up resistor is not contained.

At reset, P0BGIO and P0BGPU are 0 and all P0B pins are input ports without a pull-up resistor. The value

of the port 0B output latch is 0.

Table 12-2. Writing into and Reading from the Port Register (0.71H)

P0BGIO Pin input/output BANK0 71H

RF: 2CH, bit 1 Write Read

0 Input Possible P0B pin status

1 Output Write to the P0B latch Data in P0B latch

101

CHAPTER 12 PORTS

12.3 PORT 0C (P0C0/ADC0, P0C1/ADC1, P0C2/ADC2, P0C3/ADC3)

Port 0C is a 4-bit input/output port with an output latch. It is mapped into address 72H of BANK0 in data

memory. The output format is CMOS push-pull output.

Input or output can be specified bit-by-bit. Input/output can be specified by P0CBIO0 to P0CBIO3 (address

1CH) in the register file.

If P0CBIOn is 0 (n = 0 to 3), the P0Cn pins are used as input port. If a data read instruction is executed

for the port register, the pin statuses are read. If P0CBIOn is 1 (n = 0 to 3), the P0Cn pins are used as output

port and the contents written in the output latch are output to pins. If a read instruction is executed when pins

are used as output ports, the contents of the latch, rather than pin statuses, are fetched.

At reset, P0CBIO0 to P0CBIO3 are 0 and all P0C pins are input ports. The contents of the port output latch

are 0.

Port 0C can also be used as an analog input to the A/D converter. P0C0IDI to P0C3IDI (1BH address)

in the register file are used to switch the port and analog input pin.

If P0CnIDI is 0 (n = 0 to 3), the P0Cn/ADCn pin functions as a port. If P0CnIDI is 1 (n = 0 to 3), the P0Cn/

ADCn pin functions as the analog input pin for the A/D converter. If any bit of P0CnIDI (n = 0 to 3) is 1, the

P0F1/VREF pin is used as the VREF pin.

When using these pins for the analog input for the A/D converter, set P0CnIDI to 1 for the pins to which

analog voltage is input, immediately after reset. This setting disables the port function for the pins. Then clear

P0CBIOn (n = 0 to 3) to 0 to use the pins for input. Select which pins are used for analog input, using ADCCH0

and ADCCH1 (bits 0 and 1 at address 22H) in the register file.

At reset, P0CBIO0 to P0CBIO3, P0C0IDI to P0C3IDI, ADCCH0, and ADCCH1 are set to 0 and the P0C

pins are used as input ports.

Table 12-3. Switching the Port and A/D Converter

(n = 0 to 3)

P0CnIDI P0CBIOn Function BANK0 72H

RF: 1BH RF: 1CH Write Read

0 0 Input port Possible Pin status

P0C latch

1 Output port Possible Data in P0C latch

P0C latch

1 0 A/D converter analog Possible Data in P0C latch

inputNote 1 P0C latch

1 Output port and A/D Possible Data in P0C latch

converter analog inputNote 2 P0C latch

Notes 1. Normal setting when the pins are used as A/D converter analog input pins.

2. Functions as an output port. The analog input voltage varies with the output from the port. To

use pins as analog input pins, be sure to set P0CBIOn to 0.
*

102

µPD17145 SUB-SERIES USER’S MANUAL

12.4 PORT 0D (P0D0/SCK, P0D1/SO, P0D2/SI, P0D3/TM1OUT)

Port 0D is a 4-bit input/output port with an output latch. It is mapped into address 73H of BANK0 in data

memory. The output format is N-ch open-drain output.

Input or output can be specified bit-by-bit. Input/output is specified with P0DBIO0 to P0DBIO3 (address

2BH) in the register file.

If P0DBIOn is 0 (n = 0 to 3), the P0Dn pins are used as input port. Pin statuses are read if a data read

instruction is executed for the port register. If P0DBIOn is 1, the P0Dn pins are used as output port and the

value written in the output latch are output to pins. If a data read instruction is executed when pins are used

as output ports, the output latch value, rather than pin statuses, is fetched.

Port 0D contains a software controlled pull-up resistor. P0DBPU0 to P0DBPU3 (address 0DH) of the

register file are used to determine whether each bit of port 0D contains the pull-up resistor. When P0DBPUn

is 1, the P0Dn pin is pulled up. If P0DBPUn is 0, the pull-up resistor is not contained.

At reset, P0DBIOn is set to 0 and all P0D pins become input ports. The contents of the port output latch

become 0. The output latch contents remain unchanged even if P0DBIOn changes from 1 to 0.

Port 0D can also be used for serial interface input/output or timer 1 output. SIOEN (0BH bit 0) in the register

file is used to switch ports (P0D0 to P0D2) to serial interface input/output (SCK, SO, SI) and vice versa.

TM1OSEL (bit 3 at address 0BH) in the register file is used to switch a port (P0D3) to timer 1 output (TM1OUT)

and vice versa. If TM1OSEL = 1 is selected, 1 is output at timer 1 reset. This output is inverted every time

a timer 1 count value matches the modulo register contents.

Table 12-4. Register File Contents and Pin Functions

(n = 0 to 3)

Register file value Pin function

TM1OSEL SIOEN P0DBIOn P0D0/SCK P0D1/SO P0D2/SI P0D3/TM1OUT

RF: 0BH RF: 0BH RF: 2BH

Bit 3 Bit 0 Bit n

0 0 0 Input port

1 Output port

1 0 SCK SO SI Input port

1 Output port

1 0 0 Input port TM1OUT

1 Output port

1 0 SCK SO SI

1

103

CHAPTER 12 PORTS

Table 12-5. Data Read from the Port Register (0.73H)

Port mode Data read from the port register (0.73H)

Input port Pin status

Output port Data in output latch

SCK An internal clock is selected as a serial clock. Data in output latch

An external clock is selected as a serial clock. Pin status

SI Pin status

SO Data in output latch

TM1OUT Data in output latch

12.5 PORT 0E (P0E0, P0E1, P0E2, P0E3)

Port 0E is a 4-bit input/output port with an output latch. It is mapped into address 6EH of BANK0 in data

memory. The output format is N-ch open-drain output.

Input or output can be specified in units of four bits. Input/output is specified by P0EGIO (bit 2 at address

2CH) in the register file.

When P0EGIO is 0, each pin of port 0E is used as input port. If a read instruction is executed for the port

register, pin statuses are read. When P0EGIO is 1, each pin of port 0E is used as output port and the contents

written in the output latch are output to pins. If a read instruction is executed when pins are output ports, the

contents of the output latch, rather than pin statuses, are fetched.

Port 0E contains a software controlled pull-up resistor. P0EGPU (bit 2 at address 0CH) of the register file

in used to determine whether port 0E contains the pull-up resistor. When P0EGPU is 1, all 4-bit pins are pulled

up. If P0EGPU is 0, the pull-up resistor is not contained.

At reset, P0EGIO is set to 0 and all P0E pins become input ports. The contents of the port output latch

are 0.

Table 12-6. Writing into and Reading from the Port Register (0.6EH)

(n = 0 to 3)

P0EGIOn Pin input/output BANK0 6EH

RF: 2CH, bit 2 Write Read

0 Input Possible P0E pin status

1 Output Write to the P0E latch Data in P0E latch

104

µPD17145 SUB-SERIES USER’S MANUAL

12.6 PORT 0F (P0F0/RLS, P0F1/VREF)

Port 0F is a 2-bit input-dedicated port. It is mapped into address 6FH of BANK0 in data memory. Mask

option can be used to specify whether each pin uses a built-in pull-up resistor.

If a pin of port 0F is used as an input port, a pin status is read in the two low-order bits of the port register

when a data read instruction is executed for the port register (the two high-order bits are always 0). A data

write instruction does not affect the port register.

The P0F0/RLS pin can also be used for the input pin for the signal for releasing the standby mode.

The P0F1/VREF pin is used as the VREF pin (reference voltage input pin for the A/D converter) when any

bit of P0CnIDI (address 1BH in the register file, n = 0 to 3) is 1. If the P0F1/VREF pin functions as the VREF

pin, bit 1 at address 6FH is unpredictable and only bit 0 is valid when a data read instruction is executed for

the port register.

12.7 PORT CONTROL REGISTER

12.7.1 Input/Output Switching by Group I/O

Ports which switch input/output in units of four bits are called group I/O. Port 0A, port 0B, and port 0E are

used as group I/O. The register shown in the figure below is used for input/output switching.

Figure 12-1. Input/Output Switching by Group I/O

Bit 3 Bit 2 Bit 1 Bit 0

0 P0EGIO P0BGIO P0AGIO

R/W

0 0 0 0

0

P0AGIO Function

Sets port 0A to input mode.

1 Sets port 0A to output mode.

Read/write

Initial value when reset

0

P0BGIO Function

Sets port 0B to input mode.

1 Sets port 0B to output mode.

0

P0EGIO Function

Sets port 0E to input mode.

1 Sets port 0E to output mode.

RF: 2CH

Read = R, write = W

105

CHAPTER 12 PORTS

12.7.2 Input/Output Switching by Bit I/O

Ports which switch input/output bit-by-bit are called bit I/O. Port 0C and port 0D are used as bit I/O. The

register shown in the figure below is used for input/output switching.

Figure 12-2. Port Control Registers for Bit I/O (1/2)

Bit 3 Bit 2 Bit 1 Bit 0

P0CBIO3 P0CBIO2 P0CBIO1 P0CBIO0

R/W

0 0 0 0

0

P0CBIO0 Function

Sets P0C0 to input mode.

1 Sets P0C0 to output mode.

Read/write

Initial value when reset

0

P0CBIO1 Function

Sets P0C1 to input mode.

1 Sets P0C1 to output mode.

0

P0CBIO2 Function

Sets P0C2 to input mode.

1 Sets P0C2 to output mode

0

P0CBIO3 Function

Sets P0C3 to input mode.

1 Sets P0C3 to output mode.

RF: 1CH

Read = R, write = W

106

µPD17145 SUB-SERIES USER’S MANUAL

Figure 12-2. Port Control Registers for Bit I/O (2/2)

Bit 3 Bit 2 Bit 1 Bit 0

P0DBIO3 P0DBIO2 P0DBIO1 P0DBIO0

R/W

0 0 0 0

0

P0DBIO0 Function

Sets P0D0 to input mode.

1 Sets P0D0 to output mode.

Read/write

Initial value when reset

0

P0DBIO1 Function

Sets P0D1 to input mode.

1 Sets P0D1 to output mode.

0

P0DBIO2 Function

Sets P0D2 to input mode.

1 Sets P0D2 to output mode.

0

P0DBIO3 Function

Sets P0D3 to input mode.

1 Sets P0D3 to output mode.

RF: 2BH

Read = R, write = W

107

CHAPTER 12 PORTS

12.7.3 Specifying the Incorporation of Pull-Up Resistors for Group Pull-Up Ports

Ports for which incorporating pull-up resistors can be specified in units of four bits are called group pull-

up ports. Ports 0A, 0B and 0E are group pull-up ports.

P0AGPU, P0BGPU, and P0EGPU (RF: 0CH, bits 2, 1, and 0) are used for specifying the incorporation

of pull-up resistors for the group pull-up ports.

Figure 12-3. Register for Specifying the Incorporation of Pull-Up Resistors for Group Pull-Up Ports

Bit 3 Bit 2 Bit 1 Bit 0

P0BGPU P0AGPU

R/W

0 0 0 0

0

P0AGPU Function

Does not contain pull-up

resistor in port 0A.

1

Read/write

Initial value when reset

0

P0BGPU Function

1

RF: 0CH

Read = R, write = W

0

Does not contain pull-up

resistor in port 0B.

Contains pull-up resistor in

port 0A.

Contains pull-up resistor in

port 0B.

0

P0EGPU Function

1

Does not contain pull-up

resistor in port 0E.

Contains pull-up resistor in

port 0E.

P0EGPU

108

µPD17145 SUB-SERIES USER’S MANUAL

12.7.4 Specifying the Incorporation of Pull-Up Resistors for the Bit Pull-Up Port

Ports for which incorporating pull-up resistors can be specified in units of one bit are called bit pull-up ports.

Port 0D is a bit pull-up port.

P0DBPU0 to P0DBPU3 (RF: 0DH) are used for specifying the incorporation of pull-up resistors for the bit

pull-up port.

Figure 12-4. Register for Specifying the Incorporation of Pull-Up Resistors for the Bit Pull-Up Port

Bit 3 Bit 2 Bit 1 Bit 0

P0DBPU1 P0DBPU0

R/W

0 0 0 0

0

P0DBPU0 Function

Does not contain pull-up

resistor in P0D0.

1

Read/write

Initial value when reset

0

P0DBPU1 Function

1

RF: 0DH

Read = R, write = W

Does not contain pull-up

resistor in port P0D1.

Contains pull-up resistor in

P0D0.

Contains pull-up resistor in

P0D1.

0

P0DBPU2 Function

Does not contain pull-up

resistor in P0D2.

1

0

P0DBPU3 Function

1

Does not conatain pull-up

resistor in P0D3.

Contains pull-up resistor in

P0D2.

Contains pull-up resistor in

P0D3.

P0DBPU3 P0DBPU2

109

CHAPTER 13 PERIPHERAL HARDWARES

CHAPTER 13 PERIPHERAL HARDWARES

13.1 8-BIT TIMER COUNTER (TM0, TM1)

The µPD17149’s 8-bit timer counter has two channel timers: timer 0 (TM0) and timer 1 (TM1).

By using timer 0 count up signal as timer 1 count pulses, these two 8-bit timers can be used as a one-channel

16-bit timer.

The timers are controlled by hardware operation using the PUT/GET instruction or by register operation

in the register file using the PEEK/POKE instruction.

13.1.1 Configuration of 8-Bit Timer Counter

Figure 13-1 shows the configuration of the 8-bit timer counter. An 8-bit timer counter consists of an 8-bit

count register, 8-bit modulo register, comparator (compares count register values and modulo register values),

and selector which selects count pulse.

Cautions 1. The modulo register is a write-only register.

2. The count register is a read-only register.

13

110

µPD17145 SUB-SERIES USER’S MANUAL

Figure 13-1. Configuration of the 8-Bit Timer Counters

Remark fx: System clock oscillation frequency

Data buffer

(DBF)

Timer 1 mode

register (RF: 12H)

P0D3/

TM1OUT

fx/128

fx/8192

fx/16

Timer 0 count up

Timer 1

count register (8)

(TM1C)

IRQTM1 set signal

IRQTM1 clear signal

Selec-

tor CLK

R

D Q

Timer 1

comparator (8)

Timer 1

modulo register (8)

(TM1M)

2

Internal

 reset

TM1EN TM1RES TM1CK1 TM1CK0

P0DB3

output latch

P0DBIO3

Serial interface

control register

(RF: 0BH)

Bit I/O port control

register (RF: 2BH)

Match

Reset

Clear

TM1OUT

flip-flop

TM1OSEL

Latch

Reset

Internal bus

Data buffer

(DBF)

Interrupt control

register (RF: 0FH)

Timer 0 mode

register (RF: 11H)

Match

Timer 0

count up signal

(to timer 1)

fx/16

fx/512

fx/64

Timer 0

count register (8)

 (TM0C)

Clear

IRQTM0

set signal

IRQTM0

clear signal

Selec-

tor CLK

R

D

Q

Timer 0

comparator (8)

Timer 0

modulo register (8)

(TM0M)

2

INT

Internal

reset

TM0EN TM0RES TM0CK1 TM0CK0INT

Internal bus

Noise

eliminator

Reset

Latch

*

111

CHAPTER 13 PERIPHERAL HARDWARES

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0 0

0

TM0CK1 Selection of timer 0 count pulse

fx/16

0 fx/512

Read/write

Initial value when reset

0

TM0RES Reset of timer 0

No effect on timer 0

1 The timer 0 count register and IRQTM0 are reset.

RF: 11H

Read = R, write = W

TM0EN TM0RES TM0CK1 TM0CK0

1 fx/64

1 External clock from the INT pin

0

1

0

1

TM0CK0

0

TM0EN Timer 0 start direction

Timer 0 counting stops.

1 Timer 0 counting starts.

Figure 13-2. Timer 0 Mode Register

Remark TM0RES is automatically cleared to 0 after

it is set to 1. 0 is always read.

Remark TM0EN can be used as a status flag for

detecting the counting status of timer 0.

(1: Counting, 0: Not counting)

112

µPD17145 SUB-SERIES USER’S MANUAL

Figure 13-3. Timer 1 Mode Register

Remark TM1RES is automatically cleared to 0 after

it is set to 1. 0 is always read.

Remark TM1EN can be used as a status flag for

detecting the counting status of timer 1.

 (1: Counting, 0: Not counting)

Bit 3 Bit 2 Bit 1 Bit 0

R/W

1 0 0 0

0

TM1CK1 Selection of timer 1 count pulse

fx/128

0 fx/8192

Read/write

Initial value when reset

0

TM1RES Reset of timer 1

No effect on timer 1

1 The timer 1 count register and IRQTM1 are reset.

RF: 12H

TM1EN TM1RES TM1CK1 TM1CK0

1 fx/16

1 Count up signal from timer 0

0

1

0

1

TM1CK0

0

TM1EN Timer 1 start direction

Timer 1 counting stops.

1 Timer 1 counting starts.

113

CHAPTER 13 PERIPHERAL HARDWARES

13.1.2 Operation of 8-Bit Timer Counters

(1) Count register

The timer 0 and timer 1 count registers are 8-bit up counters whose initial values are 00H. They are

incremented each time a count pulse is entered.

A count register is initialized to 00H when:

<1> This product is reset. (See Chapter 16 .)

<2> The contents of the 8-bit modulo register match a count register value and the comparator generates

a match signal.

<3> For timer 0, 1 is written into TM0RES of the register file.

For timer 1, 1 is written into TM1RES of the register file.

(2) Modulo register

The modulo registers of timer 0 and timer 1 determine the count value of the count register. They are

initialized to FFH.

A value is set in a modulo register via the data buffer (DBF) using the PUT instruction.

(3) Comparator

The comparators of timer 0 and timer 1 output match signals when the values of the count register and

modulo register match and when the next count pulse is input. That is, if the value of the modulo register

is initial value FFH, the comparator outputs a match signal when 256 is counted.

The match signal from the comparator clears the count register contents to 0 and automatically sets an

interrupt request flag (IRQTM0 or IRQTM1) to 1. An interrupt is accepted when the EI instruction (interrupt

acceptance enable instruction) is executed and an interrupt enable flag (IPTM0 or IPTM1) is set. When

an interrupt is accepted, an interrupt request flag (IRQTM0 or IRQTM1) is set to 0 and program control

is transferred to an interrupt handling.

13.1.3 Selecting the Count Pulse

The count pulse for timer 0 is selected with TM0CK0 or TM0CK1.

One of four count pulses is selected: system clock (fx)/512, system clock (fx)/64, system clock (fx)/16, and

an external count pulse input from the INT pin.

At reset, TM0CK0 and TM0CK1 are 0 and fx/16 is selected.

The count pulse for timer 1 is selected with TM1CK0 or TM1CK1.

One of four count pulse is selected: fx/8192, fx/128, fx/16, and count up signals from timer 0.

At power start-up or reset, timer 1 is used to generate an oscillation setting time. For this purpose, the

initial values are TM1CK0 = 0 and TM1CK1 = 0 and fx/128 is selected for the count pulse. Since TM1EN =

1 is set as the initial value, when fx = 4 MHz, the µPD17149 starts at address 0000H approx. 8 ms after a

reset occurs (see Chapter 16).

114

µPD17145 SUB-SERIES USER’S MANUAL

13.1.4 Setting the Count Value in a Modulo Register

A value is set in a modulo register via the data buffer (DBF) using the PUT instruction. The peripheral

address of the modulo register is 02H for timer 0 and 03H for timer 1.

When a value is sent by the PUT instruction, data in the eight low-order bits (DBF1 and DBF0) of DBF is

sent to the modulo register. Figure 13-4 shows an example of timer 0.

Figure 13-4. Setting the Count Value in a Modulo Register

Example of setting count value 64H in timer 0 modulo register

CONTDATL DAT 4H ; CONTDATL is assigned to 4H using the symbol definition

instruction.

CONTDATH DAT 6H ; CONTDATH is assigned to 6H using the symbol definition

instruction.

MOV DBF0, #CONTDATL ;

MOV DBF1, #CONTDATH ;

PUT TM0M, DBF ; The value is transferred with reserved word TM0M.

Caution A value of between 01H and FFH can be set in the modulo register. When 00H is set, normal

counting is not done.

The modulo register is a write-only register. No count value set in the modulo register can be read from

it. Counting does not stop during 8-bit timer counter operation when the PUT TM0M, DBF or PUT TM1M,

DBF instruction is executed.

DBF3 DBF2 DBF1 DBF0

0 1 1 0 0 1 0 0

b3 b2

b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Don't care Don't care

0 1 1 0 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

PUT TM0M, DBF

Data buffer

8-bit data

TM0M (Peripheral address 02H)

115

CHAPTER 13 PERIPHERAL HARDWARES

13.1.5 Reading Count Register Values

The count register values of timer 0 and timer 1 are read at the same time via DBF (data buffer) using the

GET instruction.

The count register values of timer 0 and timer 1 are assigned to peripheral address 45H. The eight high-

order bits are assigned to the timer 1 count value. The eight low-order bits are assigned to the timer 0 count

value.

The count register values can be read into DBF by using the GET instruction. During execution of the GET

instruction, the count register stops counting and a count value is retained. When a count pulse enters the

timer in use during execution of the GET instruction, the count register is retained. After execution of the GET

instruction, the count register is incremented by one and continues counting.

The scheme prevents miscounting, even when the GET instruction is executed during timer operation

unless two or more count pulses are input during single instruction cycle.

Figure 13-5. Example of Reading 8-Bit Counter Count Values

The timer 0 count value is F0H and the timer 1 count value is A4H.

GET DBF, TM0TM1C; Example of using reserved words DBF and TM0TM1C

DBF3 DBF2 DBF1 DBF0

1 1 1 1 0 0 0 0

b3 b2 b1 b0 b3 b2 b1 b0

GET DBF, TM0TM1C

 Data buffer

16-bit data

Timer 0 count

0 1 0 0

b3 b2 b1 b0

1 0 1 0

b3 b2 b1 b0

1 1 1 1 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

 TM0TM1C (peripheral address 45H)

0 1 0 0

b11 b10 b9 b8

1 0 1 0

b15 b14 b13 b12

Timer 1 count

116

µPD17145 SUB-SERIES USER’S MANUAL

13.1.6 Setting the Interval Time

The interval at which the comparator outputs a match signal is determined by the value set in the modulo

register. The following equations represent how to determine value N to be set in the modulo register from

interval time T [s].

T = (N + 1)/fCP = (N + 1) x TCP

N = T x fCP – 1 or N = T/TCP – 1 (where N = 1 to 255)

where fCP : Count pulse frequency [Hz]

TCP: Count pulse period [s] (1/fCP = resolution)

• Example of calculating the count value from the interval time, and program example

• Example in which an interval time of 7 ms is assumed for timer 1 (system clock: fx = 4 MHz)

It is impossible to set the interval time to 7 ms exactly, because of the resolution of the timer. To select

a value nearest to 7 ms, it is necessary to select the count pulse (fx/128, having a resolution of 32

µs) and use it to obtain the count value.

(Example of calculation) T = 7 ms and resolution = 32 µs

N = T/resolution – 1

= 7 x 10–3/(32 x 10–5) – 1

= 217.75 =. . 218 (= DAH)

When the interval time becomes nearest to 7 ms, the modulo register value becomes DAH, in which

case the interval time is 7.008 ms.

(Program example)

MOV DBF0, #0AH ; Store DAH in the DBF using reserved words DBF0 and DBF1.

MOV DBF1, #0DH ;

PUT TMM, DBF ; Transfer the contents of the DBF using reserved word TMM.

INITFLG TM1EN, TM1RES, NOT TM1CK1, NOT TM1CK0

; Set TM1EN and TM1RES using the built-in macro instruction INITFLG,

; set the timer 1 count pulse to fx/128, and

; start counting.

*

117

CHAPTER 13 PERIPHERAL HARDWARES

13.1.7 Interval Time Error

The interval time may have an error of up to –1.5 counts. Be careful when the value set in the modulo

register is small.

(1) Error that occurs if the count register is cleared to 0 when counting (maximum error: –1 count)

The count register for the 8-bit timer counter is cleared to 0 by setting the TMnRES flag (to 1). The

frequency division circuit for generating the count pulse from the system clock is not reset, however.

If the count is cleared to 0 by setting the TMnRES flag (to 1) when counting, an error for one pulse period

occurs at the timing of the first count. The following example shows how counting proceeds if 2 is set

in the modulo register.

Figure 13-6. Error that Occurs If the Count Register is Cleared to 0 When Counting

In this example, a match signal is supposed to be output at every 3 counts. After the count is cleared,

however, a match signal is output at the second count (minimum).

This error occurs if TMnRES <– 1 occurs simultaneously with TMnEN=1 <– 0.

*

1 2 0 1 2

2 or 3 counts

Count pulse

Count register

Count cleard (TMn RES ← 0)

Match signal output

118

µPD17145 SUB-SERIES USER’S MANUAL

(2) Error that occurs when counting is resumed from a point of break (maximum error: –1.5 counts)

The count register for the 8-bit timer counter is cleared to 0 by setting the TMnRES flag (to 1). The

frequency division circuit for generating the count pulse from the system clock is not reset, however.

If counting is resumed by setting the TMnEN flag (to 1), the timing of the first count varies as shown below,

depending on whether the count pulse begins at a low or high level.

If the count pulse begins at a high level, the first count occurs when the count pulse falls next time. If

the count pulse begins at a low level, the first count occurs when counting starts.

For the first count after counting begins, there occurs an error of –0.5 to –1.5 counts before a match signal

is output. The following example shows how counting proceeds if 1 is set in the modulo register.

Figure 13-7. Error that Occurs When Counting is Resumed from a Point of Break.

(a) If the count pulse begins at a high level (error: –0.5 to –1 count)

(b) If the count pulse begins at a low level (error: –1 to –1.5 counts)

In this example, a match signal is supposed to be output at every 2 counts, but the first match signal

(immediately after counting is resumed), is output after 1.5 counts (maximum) or 0.5 counts (minimum) (error:

–0.5 to –1.5 counts).

The same error occurs also for the oscillation settling time, because the timer is used also for oscillation

settling time generation.

0 1 0 1

2 count1 to 1.5 count

Counting started (TMnEN = 1 ← 0)

Count pulse

Count register

Match signal output Match signal output

0 1 0 1 0

2 count0.5 to 1 count

Counting started (TMnEN = 1 ← 0)

Count pulse

Count register

Match signal output Match signal output

119

CHAPTER 13 PERIPHERAL HARDWARES

13.1.8 Outputting a Timer 1

The P0D3/TM1OUT pin functions as a timer 1 output pin when the TM1OSEL flag is set to 1. The P0DBIO3

value has nothing to do with this setting.

Timer 1 contains a flip-flop for a match signal output. It reverses the output each time the comparator

outputs a match signal. When the TM1OSEL flag is set to 1, the contents of this flip-flop are output to the

P0D3/TM1OUT pin.

The P0D3/TM1OUT pin is an N-ch open-drain output pin. The mask option enables this pin to contain a

pull-up resistor. If this pin does not contain a pull-up resistor, its initial status is high impedance.

An internal timer 1 output flip-flop starts operating when TM1EN is set to 1. To make timer 1 start output

beginning at an initial status of the pin, set 1 in TM1RES and reset the flip-flop.

Figure 13-8. Timer 1 Output Setting Register

Caution The SIOEN bit has no relationship with

the timer 1 output setting.

0

SIOEN Function

P0D0/SCK, P0D1/SO, and P0D2/SI function as

ports.

1
P0D0/SCK, P0D1/SO, and P0D2/SI function as the

serial interface.

RF: 0BH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

TM1OSEL 0 0

Read/write

Initial value when reset

SIOEN

0 0 0

TM1OSEL Function

The P0D3/TM1OUT pin is used as a port.

The P0D3/TM1OUT pin is used for timer 1 match

signal output.

0

1

120

µPD17145 SUB-SERIES USER’S MANUAL

13.2 BASIC INTERVAL TIMER (BTM)

The µPD17149 provides a 7-bit basic interval timer.

This timer has the following functions:

(1) Reference time generation

(2) Selection and counting of a wait time when standby mode is released

(3) Watchdog timer operation for detecting software errors (infinite loops, etc.)

13.2.1 Configuration of the Basic Interval Timer

Figure 13-9 shows the configuration of the basic interval timer.

121

CHAPTER 13 PERIPHERAL HARDWARES
F

ig
ur

e
13

-9
.

 C
on

fig
ur

at
io

n
of

 t
he

 B
as

ic
 I

nt
er

va
l T

im
er

R
em

ar
k

<
1>

 t
o

<
4>

 in
 t

he
 f

ig
ur

e
in

di
ca

te
 t

he
 s

ig
na

ls
 in

 t
he

 t
im

in
g

ch
ar

t
in

 F
ig

ur
e

13
-1

2.

fx
/1

63
84

S
el

ec
to

r

SR
Q

2

S
el

ec
to

r

B
T

M
 m

od
e

re
gi

st
er

(R
F

: 1
3H

)

W
at

ch
do

g
tim

er

m
od

e
re

gi
st

er
(R

F
: 1

3H
)

B
T

M
IS

E
L

B
T

M
R

E
S

B
T

M
C

K
1

B
T

M
C

K
0

W
D

T
R

E
S

0
W

D
T

E
N

0

fB
T

M

25

B
as

ic
 in

te
rv

al
 ti

m
er

(7
-b

it
sc

al
er

)

fB
T

M

fB
T

M

27

R
es

et

R
es

et

1-
bi

t
sc

al
er

O

ne
-s

ho
t

m
ul

tiv
ib

ra
to

r

IR
Q

B
T

M

se
t s

ig
na

l

W
at

ch
do

g
re

se
t

si
gn

al

O
ut

pu
ts

 1
 fr

om
 c

ou
nt

 0
 to

 7

an
d

ou
tp

ut
s

0
fr

om
 8

 to
 2

55
.

fx
/4

09
6

f x
/5

12

fx
/1

6

<2
>

<4
>

<1
>

<3
>

In
te

rn
al

 b
us

122

µPD17145 SUB-SERIES USER’S MANUAL

13.2.2 Registers for Controlling the Basic Interval Timer

The basic interval timer is controlled by the BTM mode register and watchdog timer mode register.

Figure 13-10 and 13-11 show the configurations of the registers.

Figure 13-10. BTM Mode Register

Remark BTMRES is automatically cleared to 0

after it is set to 1. 0 is always read.

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0 0

0

BTMCK1 Selection of BTM count pulse

0

Read/write

Initial value when reset

0

BTMRES Reset of BTM

1
Resets the binary counter of the basic interval

timer (BTM).

0

BTMISEL

1

RF: 13H

Read = R, write = W

BTMISEL BTMRES BTMCK1 BTMCK0

1
fx/4096

(256 instruction execution time)

1

0

1

0

1

BTMCK0

fx/16

(1 instruction execution time)

fx/512

(32 instruction execution time)

Sets the interval for the 128-count pulse.

Sets the interval for the 32-count pulse.

Selection of interval

fx/16384

(1024 instruction execution time)

Does not affect the basic interval timer (BTM).

123

CHAPTER 13 PERIPHERAL HARDWARES

Figure 13-11. Watchdog Timer Mode Register

Remarks 1. WDTEN cannot be cleared to 0 by the

program.

2. WDTEN is automatically cleared to 0

after it is set to 1. 0 is always read.

Remark WDTRES is automatically cleared to 0

after it is set to 1. 0 is always read.

13.2.3 Operation of the Basic Interval Timer

The basic interval timer is a 7-bit binary counter that is always incremented by a count pulse specified in

the BTM mode register. It cannot stop counting.

The interval time for the basic interval timer can be switched using BTMISEL. When BTMISEL = 0, the

interval time is the time (128/fBTM) obtained by dividing the count pulse frequency by 128. When BTMISEL

= 1, it is the time (32/fBTM) obtained by dividing the count pulse frequency by 32.

Switching the interval time does not cause the contents of the counter to be cleared.

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0 0

0

WDTEN Enabling watchdog timer function

1 Starts watchdog timer operation.

Read/write

Initial value when reset

0

WDTRES

Does not affect the watchdog timer.

1
Resets the flip-flop used to retain a BTM

overflow carry used for the watchdog timer.

RF: 03H

Read = R, write = W

WDTRES 0 WDTEN0

Puts the watchdog timer in stop status.

Reset of the watchdog timer

124

µPD17145 SUB-SERIES USER’S MANUAL

13.2.4 Watchdog Timer Function

The basic interval timer can also be used as a watchdog timer which detects a system hang.

(1) Overview of the watchdog timer

The watchdog timer is a counter that generates a reset signal at constant intervals. When the generation

of a reset signal is being disabled every time by the program, this function enables the system to be reset

(starting from address 0000H) when the system hangs up (the watchdog timer is not reset within the

expected time) for some reason, such as due to external noise.

Even if a program branches to an unexpected routine due to external noise and enters an infinite loop,

the system can be recovered within a certain time by the reset signal that is generated by the watchdog

timer.

(2) Operation of the watchdog timer

When WDTEN is set to 1, the 1-bit scaler starts operating, causing the basic interval timer to operate as

an 8-bit watchdog timer.

Once the watchdog timer runs, the watchdog timer function can be stopped only when the device is reset

and WDTEN is cleared to 0.

The generation of a reset by the watchdog timer can be disabled in the following two ways:

<1> Repeatedly setting WDTRES in a program

<2> Repeatedly setting BTMRES in a program

For <1>, it is necessary to set WDTRES within the time during which the watchdog timer counts from 8

to 191 (immediately before 192), as shown in Figure 13-12. So, a program must be developed which

executes SET1 WDTRES at least once within the time in which the watchdog timer counts 184.

For <2>, it is necessary to set BTMRES within the time in which the basic interval timer (BTM) counts

128. So, a program must be developed which executes SET1 BTMRES at least once within the time in

which the BTM counts 128. This method, however, disables BTM interrupt handling.

Caution Setting WDTEN does not cause the BTM to be reset. So, it is necessary to set BTMRES

before setting WDTEN for the first time, thereby resetting the BTM.

Example

...
SET1 BTMRES

SET2 WDTEN, WDTRES
...

125

CHAPTER 13 PERIPHERAL HARDWARES
F

ig
ur

e
13

-1
2.

T

im
in

g
C

ha
rt

 f
or

 t
he

 W
at

ch
do

g
T

im
er

 (
W

he
n

th
e

W
D

T
R

E
S

 F
la

g
is

 U
se

d)

W
D

T
R

E
S

ac

ce
pt

ed
W

D
T

R
E

S

ac
ce

pt
ed

W
D

T
R

E
S

ac

ce
pt

ed

W
D

T
E

N

W
D

T
R

E
S

O
ut

pu
t f

ro
m

 o
ne

-s
ho

t

m
ul

tiv
ib

ra
to

r (
<1

>)

 <
4>

f B
T

M
/2

7
(<

2>
)

(IR
Q

B
T

M
 is

 s
et

 a
t f

al
lin

g
ed

ge
s.

)

f B
T

M
/2

8
 (<

3>
)

W
at

ch
do

g
re

se
t s

ig
na

l

(a

ct
iv

e
hi

gh
)

R
es

et
 s

ig
na

l n
ot

 g
en

er
at

ed

0
8

12
8

19
2

25
5

8

12
8

19
2

25
5

8

12
8

19
2

64

12
8

19
2

25
5

C
ou

nt
 in

 w
at

ch
do

g
tim

er

0
0

0

*

126

µPD17145 SUB-SERIES USER’S MANUAL

(3) Watchdog timer program example

(Program example)

Notes 1. A method of resetting the counter before the BTM overflows does not enable BTM interrupt

handling.

2. Programming is easy with a method in which BTM interrupt handling is used to reset the

watchdog timer, but its program crash detection ratio is low, compared with the other two

methods.

*

INTBTMJOB:

						SET1 WDTRES

						EI

						RETI

JOB2:

					CLR IPBTM

				SET1 WDTMRES

				SET1 WDTRES

				SET IPBTM

				RET

JOB1:

					CLR IPBTM

					SET1 BTMRES

				SET1 BTMRES

				SET1 BTMRES

				SET IPBTM

				RET

Start

Initialize

Main processing

The counter is reset before

the BTM overflows.Note 1

The watchdog timer is reset

before it counts up to 192.

The watchdog timer is reset,

using BTM interrupt

handling.Note 2

ORG OH

BR INITJOB

ORG 2H

BR INTBTMJOB

INITJOB:

								INITFLG NOT BETMISEL, BTMRES, NOT BTMCK1, BTMCK0

								SET1

								SET2

								SET1

								CLR1		

								EI																																																																									; Enable the BTM interrupt.

																			.
																			.
																			.

MAIN:

								CALL

								CALL

																			.
																			.

								BR MAIN

								END

JOB1

JOB2

BTMRES

WDTRES, WDTEN; Start the watchdog timer.

IPBTM

IRQBTM

127

CHAPTER 13 PERIPHERAL HARDWARES

13.3 A/D CONVERTER

µPD17149 contains an 8-bit resolution A/D converter with 4-channel analog input (P0C0/ADC0 - P0C3/

ADC3).

The A/D converter uses the successive approximation method. The following two operation modes are

available:

<1> Continuous mode: 8-bit A/D conversion occurs starting at high-order bits.

<2> Single mode : Comparison occurs with an arbitrary voltage value set in the 8-bit data register.

13.3.1 A/D Converter Configuration

Figure 13-13 shows the A/D converter configuration.

Figure 13-13. Block Diagram for the A/D Converter

Note When the stop instruction is executed, the 8-bit data register (ADCR) is cleared to 00H.

Remark A/D conversion continues even if the HALT instruction is executed. When A/D conversion ends,

the current flowing into the VREF pin is cut off.

ADCSOFT ADCCMP ADCENDADCSTRT0 00 ADCCH10 ADCCH0
RF : 20H RF : 21H

Internal bus

0 0
RF : 22H

Remark n = 0 to 3

Read signal

P0CnIDI
P0CBIOn

P0Cn/ADCn

P0F1/VREF

P0CnIDI

Selector

Output

latch

Selector

4

3R/2 R R R/2

Tap decoder

Comparator

D/A converter

8-bit data registerNote

(ADCR)

8

Control circuit

8

100 pF

(MAX.)

4

STOP instruction

 signal

A/D end signal

P0F1 input data

*

*

*

128

µPD17145 SUB-SERIES USER’S MANUAL

13.3.2 A/D Converter Functions

(1) ADC0 - ADC3 pins

These pins are used to input 4-channel analog voltage to the A/D converter. The A/D converter contains

a sample hold circuit. Analog input voltage is internally retained during A/D conversion.

(2) VREF pin

This pin is used to input the reference voltage for the A/D converter.

A signal input to ADC0 to ADC3 is converted to a digital signal based on voltage applied across VREF and

GND. To reduce the current consumption of the microcontroller, the A/D converter has a function for

automatically stopping the current which flows into the VREF pin when the converter is not operating.

Current flows into the VREF pin in the following cases.

<1> Continuous mode (ADCSOFT = 0)

From when the ADCSTRT flag is set (1) until the ADCEND flag is set (1).

<2> Single mode (ADCSOFT = 1)

From when the ADCSTRT flag is set (1) or from when a value of the 8-bit data register is written

until the result of comparison by the comparator is written in the ADCCMP flag.

Remarks 1. Even when the HALT instruction is executed during the A/D conversion, the A/D converter

operates until the ADCEND flag is set in continuous mode or until the result of comparison

is saved in the ADCCMP flag in single mode. A current flows into the VREF pin while the

A/D converter is operating.

2. The A/D conversion stops when the STOP instruction is executed. The A/D converter is

initialized and a current does not flow into the VREF pin. (The A/D converter remains stopped

after the STOP mode is released.)

(3) 8-bit data register (ADCR)

In the continuous mode, this 8-bit data register stores A/D conversion results for successive approxima-

tion. It is read by the GET instruction. In the single mode, the data in this register is converted to analog

voltage by the internal D/A converter and the comparator compares this voltage with an analog signal input

from the ADCn pin. A value can be written in this register by using the PUT instruction.

(4) Comparator

The comparator compares an analog input voltage with the voltage output from the D/A converter. Value

1 is output if the analog input voltage is higher. Value 0 is output if the input voltage is lower. The

comparison result is stored in the 8-bit data register (ADCR) in the continuous mode. It is stored in the

ADCCMP flag in the single mode.

129

CHAPTER 13 PERIPHERAL HARDWARES

(5) A/D converter control register

Figure 13-14 shows the A/D converter control register.

Figure 13-14. A/D Converter Control Register (1/2)

Remarks 1. In the single mode, the flag content is

valid for the third and subsequent in-

structions after ADCSTRT is set (1) or

data is set in ADCR until ADCSTRT or

ADCR is set again.

2. In the continuous mode, a value changes

according to an A/D conversion value.

However, the bit for this value cannot

be identified.

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0 0

0

ADCEND End of A/D conversion

Read/write

Initial value when reset

0

ADCCMP
Comparison result

(valid only in the single mode)

1

0

ADCSOFT A/D operation mode selection flag

Continuous mode

1 Single mode

RF: 21H

Read = R, write = W

ADCSOFT 0 ADCCMP ADCEND

1

R

Initial status or during A/D conversion.

Indicates the end of A/D conversion in the

continuous mode.

Automatically cleared to 0 when A/D

conversion (continuous or single mode) starts.

Analog input voltage is lower than output

voltage of the internal D/A converter.

Analog input voltage is higher than output

voltage of the internal D/A converter.

*

130

µPD17145 SUB-SERIES USER’S MANUAL

Figure 13-14. A/D Converter Control Register (2/2)

Remark ADCSTRT is a read/write flag. However,

0 is always read.

0

0

ADCSTRT Function

1

RF: 20 H

Read = R, write = W

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

ADCSTRT

0 0 0

Automatically cleared to 0 when A/D

conversion.

Automatically cleared to 0 when A/D

conversion (continuous or single mode)

starts.

0

ADCCH1 Analog input channel selection

 ADC0 is selected.

0 ADC1 is selected.

RF: 22H

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/WRead/write

Initial value when reset

ADCCH0

0 0 0

ADCCH1

0

1

ADCCH0

1

1

0

1

 ADC2 is selected.

 ADC3 is selected.

0 0

131

CHAPTER 13 PERIPHERAL HARDWARES

13.3.3 Setting Values in the 8-Bit Data Register (ADCR)

A value is set in the 8-bit data register via the data buffer (DBF) using the PUT instruction in the same way

as for comparison voltage setting in the single mode.

The peripheral address for the 8-bit data register (ADCR) of the A/D converter is assigned to 04H. If a value

is sent to ADCR by the PUT instruction, only the eight low-order bits (DBF1, DBF0) of DBF are valid. DBF3

and DBF2 values do not affect ADCR.

Figure 13-15. Setting a Value in the 8-Bit Data Register (ADCR)

Example of setting 6CH in ADCR

CONTDATL DAT CH ; CONTDATL is assigned to CH using the symbol definition instruction.

CONTDATH DAT 6H ; CONTDATH is assigned to 6H using the symbol definition instruction.

MOV DBF0, #CONTDATL ;

MOV DBF1, #CONTDATH ;

PUT ADCR, DBF; Data is transferred using reserved words ADCR and DBF.

DBF3 DBF2 DBF1 DBF0

0 1 1 0 1 1 0 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Don't care Don't care

0 1 1 0 1 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

PUT ADCR, DBF

Data buffer

8-bit data

ADCR (Peripheral address 04H)

132

µPD17145 SUB-SERIES USER’S MANUAL

13.3.4 Reading Values from the 8-Bit Data Register (ADCR)

A value is read from the 8-bit data register (ADCR) via the data buffer (DBF) using the GET instruction.

The 8-bit data register (ADCR) of the A/D converter has peripheral address 04H and only its eight low-order

bits (DBF1, DBF0) are valid. Execution of the GET instruction does not affect the eight high-order bits of DBF.

Figure 13-16. Reading Values from the 8-Bit Data Register (ADCR)

The result from 8-bit A/D conversion is E2H.

GET DBF, ADCR ; Example of using reserved words DBF and ADCR

DBF3 DBF2 DBF1 DBF0

1 1 1 0 0 0 1 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Retained Retained

1 1 1 0 0 0 1 0

b7 b6 b5 b4 b3 b2 b1 b0

GET DBF, ADCR

Data buffer

8-bit data

ADCR (Peripheral address 04H)

133

CHAPTER 13 PERIPHERAL HARDWARES

13.3.5 A/D Converter Operation

The A/D converter operates in two modes: continuous mode and single mode. The mode can be switched

by setting the ADCSOFT flag.

ADCSOFT A/D converter operation mode

0 Continuous mode (A/D conversion)

1 Single mode (compare operation)

Figure 13-17. Relationship between the Analog Input Voltage and Digital Conversion Result

FFH

FEH

FDH

N

03H

02H

01H

1

256

2

256

N

256

255

256

254

256

256

256

00H
0

(x VDD)

D
ig

ita
l c

on
ve

rs
io

n
re

su
lt

Analog input voltage (V)

Ideal conversion result

134

µPD17145 SUB-SERIES USER’S MANUAL

(1) Continuous mode

(a) Overview of continuous mode

8-bit A/D conversion is done based on the successive approximation method and the conversion result

is automatically stored in the 8-bit data register (ADCR).

The internal comparator compares an analog input voltage with the voltage output from the D/A

converter. Conversion data is sequentially obtained starting from the most significant bit of the eight

bits. In this mode, it takes the time required to execute 25 instructions to complete 8-bit A/D conversion.

Completion of 8-bit A/D conversion can be confirmed by checking that the ADCEND flag has been

set to 1.

(b) Explanation of continuous mode operation

If ADCSOFT is 0, the A/D converter enters the continuous mode.

Before A/D conversion starts, port input is disabled for the pin used for analog input by setting P0CnIDI

to 1. This is done to prevent the increase in through current of the port input buffer when the level

of voltage of the pin specified for analog input is intermediate.

Then an analog input signal is selected by ADCCH1 or ADCCH0. A/D conversion is started by setting

the ADCSTRT flag to 1. This flag is cleared to 0 immediately after A/D conversion starts.

During A/D conversion, internal hardware performs successive approximation starting with the most

significant bit of the eight bits. The conversion results are sequentially stored bit-by-bit in the 8-bit data

register, starting with the most significant bit. The conversion time required for each bit is equivalent

to the execution time of three instructions. If 8-bit resolution is not required, data being A/D converted

can be fetched by calculating the number of instructions before the ADCEND flag is set.

Completion of A/D conversion can be confirmed by checking that the ADCEND flag has been set to

1 which indicate that data has been stored in the least significant bit of the 8-bit data register.

135

CHAPTER 13 PERIPHERAL HARDWARES

Figure 13-18. Using the Continuous Mode for the A/D Converter

Set the continuous mode (ADCSOFT = 0)

Set the port input disable flag of the pin used for

analog input

(Set P0CnIDI to 1. n = 0 to 3)

Select the analog input channel

(Set ADCCH1 or ADCCH0)

Start A/D conversion

(Set ADCSTRT to 1)

Wait for the completion of A/D conversion

(Wait for ADCEND to be set)

Read the A/D conversion results

(Execute GET for the 8-bit data register)

136

µPD17145 SUB-SERIES USER’S MANUAL

(c) Continuous mode (A/D conversion) timing

Figure 13-19. Continuous Mode (A/D Conversion) Timing

Caution Sampling is performed eight times for each A/D conversion. If the analog input voltage

changes considerably during A/D conversion, accurate A/D conversion cannot be per-

formed. To obtain accurate conversion, minimize any change in the analog input voltage

during A/D conversion.

Time required for one sampling operation = 14/f x (1.75 µs, at f x = 8 MHz)

Sampling cycle period = 48/f x (6 µs, at f x = 8 MHz)

POKE 1 2 3 4 5 6 7 24 GET

Only most signif-

icant bit is valid.

Only high-order

two bits are valid.

All eight bits

are valid.

Read ADCR.

Previous

data

Initial value

80H

Most significant

bit is fixed.

All eight bits

are fixed.

Number of instruction to be executed (Instruction cycle)

ADCEND

ADCSTRT

8-bit data

register

8 9

SamplingSamplingSampling

Execute

ADCSTRT.

137

CHAPTER 13 PERIPHERAL HARDWARES

Table 13-1. Data Conversion Time for the A/D Converter

Number of instructions executed Bits for which A/D conversion is completed\
after ADCSTRT is set to 1Note (valid bits when ADCR is read)

4 instructions Most significant bit

7 instructions High-order 2 bits

10 instructions High-order 3 bits

13 instructions High-order 4 bits

16 instructions High-order 5 bits

19 instructions High-order 6 bits

22 instructions High-order 7 bits

25 instructions All 8 bits

Note Including a GET instruction to read data from ADCR

(2) Single mode

(a) Overview of single mode

In the single mode, data in the 8-bit data register (ADCR) is compared with voltage subjected to D/

A conversion and with an analog input voltage.

The comparison result appears in the ADCCMP flag.

(b) Explanation of single mode operation

If ADCSOFT is 1, the AD converter enters the single mode.

Before single mode operation starts, port input is disabled for the pin to be used for analog input by

setting P0CnIDI to 1. This is done for the same reason as in the continuous mode. Then an analog

input signal is selected by ADCCH1 or ADCCH0.

To start single mode operation, execute a write instruction (PUT ADCR, DBF) for the 8-bit data register

(ADCR) or set ADCSTRT to 1 when ADCSOFT is 1. When starting the operation by setting ADCSTRT

to 1, store the data to be converted in the 8-bit data register (ADCR) before setting ADCSTRT.

The comparison result in single mode appears in ADCCMP at the execution of the third instruction

after a PUT instruction is executed to write to the 8-bit data register (ADCR). At this time, the ADCEND

flag becomes invalid.

138

µPD17145 SUB-SERIES USER’S MANUAL

Figure 13-20. Using the Single Mode for the A/D Converter

Set single mode

(ADCSOFT = 1)

Disable port input for pin to

be used for analog input

(Set P0CnIDI to 1)

Select analog input channel

(Set ADCCH0 or ADCCH1)

Comparison data

in ADCR?

Read ADCCMP flag when third

instruction is executed and read

comparison result

Request A/D conversion start

(ADCSTRT = 1)

NO

YES

Execute write instruction for

8-bit data register

(PUT ADCR, DBF)

139

CHAPTER 13 PERIPHERAL HARDWARES

(c) Single mode (compare operation) timing

Figure 13-21. Single Mode (Compare Operation) Timing

The timing in the single mode is as follows: After 1 is written to ADCSTRT (by executing the POKE

instruction), a value is stored in ADCCMP and the comparison result is read by the PEEK instruction

at the execution of the third instruction. Setting a value in ADCR (by executing the PUT instruction)

also starts the comparison and the result is read at the third instruction after the setting.

ADCCMP is cleared to 0 by reset or by the execution of a write instruction to ADCR.

Caution Before setting a value in ADCR, always set ADCSOFT to 1. If ADCSOFT = 0, no value

can be set in ADCR. (The PUT ADCR,DBF instruction is ineffective.)

Time required for one sampling operation = 14/f x (1.75 µs, at f x = 8 MHz)

Sampling

PUT 1 2 PEEKPEEK
1 2POKE

Number of instruction to be executed (Instruction cycle)

Execute ADCSTRT.

Sampling

Read ADCCMP. Read ADCCMP.

Previous data Comparison result Comparison resultPOKE

ADCEND

ADCSTRT

140

µPD17145 SUB-SERIES USER’S MANUAL

13.4 SERIAL INTERFACE (SIO)

The serial interface of the µPD17149 consists of an 8-bit shift register (SIOSFR), 4-bit serial mode register,

and serial clock counter. It is used for serial data input/output.

13.4.1 Functions of the Serial Interface

This serial interface provides three signal lines: serial clock input pin (SCK), serial data output pin (SO),

and serial data input pin (SI). It allows 8 bits to be sent or received in synchronization with clocks. It can

be connected to peripheral input/output devices using any method with a mode compatible to that used by

the µPD7500 or 75X series.

(1) Serial clock

Three types of internal clocks and one type of external clock are able to be selected. If an internal clock

is selected as a serial clock, it is automatically output to the P0D0/SCK pin.

Table 13-2. Serial Clocks

SIOCK1 SIOCK0 Serial clock to be selected

0 0 External clock from the SCK pin

0 1 fX/16

1 0 fX/128

1 1 fX/1024

fX: System clock oscillation frequency

(2) Transmission operation

When SIOEN is set to 1, the pins of port 0D (P0D0/SCK, P0D1/SO, P0D2/SI) function as the pins of the

serial interface. The serial interface operates in synchronization with the falling edge of the external or

internal clock by setting SIOTS to 1. When SIOTS is set, IRQSIO is automatically cleared.

Transmission starts from the most significant bit of the shift register in synchronization with the falling edge

of the serial clock. SI pin information is stored in the shift register starting at the least significant bit in

synchronization with the rising edge of the serial clock.

When the 8-bits data transmission is terminated, SIOTS is automatically cleared and IRQSIO is set.

Remark Serial transmission starts only from the most significant bit of the shift register contents. It is

not possible to transmit from the least significant bit. SI pin status is always stored in the shift

register in synchronization with the rising edge of the serial clock.

*

141

CHAPTER 13 PERIPHERAL HARDWARES

Figure 13-22. Block Diagram of the Serial Interface

Caution The output latch of the shift register is independent of that of the P0D 1 pin. Therefore, even

if an output instruction is executed for the P0D 1 pin, the output latch status of the shift

register does not change. The output latch of the shift register is cleared to 0 by a reset.

After that, the latch retains the LSB of the data transmitted previously.

Shift register (SIOSFR)

fx
/1

02
4

fx
/1

28

f x
/1

6

P0D2/SI

P0D1/SO

P0D0/SCK

SIOEN

P0DBIO0

P0DBIO1

Q
S

R

P0D1

output

latch

SIOTS SIOHIZ SIOCK1 SIOCK0

One

shot

Clear

Serial clock counter

IRQSIO

clear signal

IRQSIO

set signal

S
el

ec
to

r

Selector

S
er

ia
l s

ta
rt

S
el

ec
to

r

Output

latch

LSB MSB

Carry

Clock

P0D0

output

latch

142

µPD17145 SUB-SERIES USER’S MANUAL

13.4.2 3-Wire Serial Interface Operation Modes

Two modes can be used for the serial interface. If the serial interface function is selected, the P0D2/SI

pin always takes in data in synchronization with the serial clock.

• 8-bit transmission and reception mode (simultaneous transmission and reception)

• 8-bit reception mode (SO pin: high impedance status)

Table 13-3. Serial Interface Operation Mode

SIOEN SIOHIZ P0D0/SI pin P0D1/SO pin Serial interface operation mode

1 0 SI SO 8-bit transmission and reception mode

1 1 SI P0D1 (input) 8-bit reception mode

0 x P0D0 (I/O) P0D1 (I/O) General port mode

x: Don't care

(1) 8-bit transmission and reception mode (simultaneous transmission and reception)

Serial data input/output is controlled by a serial clock. The most significant bit of the shift register is output

from the SO line with a falling edge of the serial clock (SCK pin signal). The contents of the shift register

is shifted one bit and at the same time, data on the SI line is loaded into the least significant bit of the

shift register.

The serial clock counter (3-bit counter) counts serial clock pulses. Every time it counts eight clocks, the

internal interrupt request flag (IRQSIO) is set to 1.

Figure 13-23. Timing of 8-Bit Transmission and Reception Mode

(Simultaneous Transmission and Reception)

Remark DI : Input serial data

DO: Output serial data

1 2 3 4 5 6 7 8

SI pin DI6 DI5 DI4 DI3 DI2 DI1 DI0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

Transmission starts in synchronization with the SCK

pin falling edge.

An instruction which writes 1 into SIOTS is executed.

(Transmission start request)

End of

transmission

SCK pin

DI7

SO pin

IRQSIO

143

CHAPTER 13 PERIPHERAL HARDWARES

(2) Clock synchronization 8-bit transmission and reception mode (SO pin: high impedance status)

When SIOHIZ is 1, the P0D1/SO pin is in the high impedance status. If serial clock supply starts by writing

1 in SIOTS, only the reception function of the serial interface operates.

The P0D1/SO pin is in the high impedance status and can be used for input port (P0D1).

Figure 13-24. Timing of the 8-Bit Reception Mode

Remark DI: Input serial data

(3) Operation stop mode

If the value in SIOTS (RF: address 02H, bit 3) is 0, the serial interface enters operation stop mode. In

this mode, no serial transfer occurs.

In this mode, the shift register does not perform shifting and can be used as an ordinary 8-bit register.

1 2 3 4 5 6 7 8

SI pin DI6 DI5 DI4 DI3 DI2 DI1 DI0

Transmission starts in synchronization with the SCK

pin falling edge.

An instruction which writes 1 into SIOTS is executed.

(Transmission start request)

End of

transmission

SCK pin

DI7

SO pin

IRQSIO

Hi-Z

144

µPD17145 SUB-SERIES USER’S MANUAL

Figure 13-25. Serial Interface Control Register (1/2)

Remark SIOTS is automatically cleared to 0 when

serial transmission is completed.

0

SIOCK1 Serial clock selection

External clock (SCK pin)

0 fx/16

0

SIOHIZ

Serial data output (SO pin)

1 Input port (P0D1 pin)

0

SIOTS

Forced termination of the serial transfer.

(Disables intermediate restart.)

1

Start of serial transfer operation

• At internal clock selection

Starts operation using the internally divided

system-clock signal as a serial clock.

• At external clock selection

Starts operation at the falling edge of the SCK

signal.

RF: 02H

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/WRead/write

Initial value when reset

SIOCK0

0 0 0

SIOCK1SIOHIZSIOTS

1 fx/128

1 fx/1024

SIOCK0

0

1

0

1

Function selection of the P0D1/SO pin

Start and stop of serial transfer

*

*

145

CHAPTER 13 PERIPHERAL HARDWARES

Figure 13-25. Serial Interface Control Register (2/2)

Remark See also Chapter 12 .

Caution The TM1OSEL bit has no relationship

with the serial interface.

0

SIOEN Enabling SIO operation

P0D0/SCK, P0D1/SO, and P0D2/SI function as ports.

1
P0D0/SCK, P0D1/SO, and P0D2/SI function as the

serial interface.

RF: 0BH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

TM1OSEL 0 0

Read/write

Initial value when reset

SIOEN

0 0 0

TM1OSEL Function selection of the P0D3/TM1OUT

The P0D3/TM1OUT pin is used as a port.

The P0D3/TM1OUT pin is used for timer 1 output.

0

1

146

µPD17145 SUB-SERIES USER’S MANUAL

13.4.3 Setting Values in the Shift Register

Values are set in the shift register via the data buffer (DBF) using the PUT instruction.

The peripheral address of the shift register is 01H. When sending a value to the shift register using the

PUT instruction, only the low-order eight bits (DBF1, DBF0) of DBF are valid. The DBF3 and DBF2 values

do not affect the shift register.

Figure 13-26. Setting a Value in the Shift Register

Example of setting value 64H in the shift register

SIODATL DAT 4H ; SIODATL is assigned to 4H using symbol definition.

SIODATH DAT 6H ; SIODATH is assigned to 6H using symbol definition.

MOV DBF0, #SIODATL ;

MOV DBF1, #SIODATH;

PUT SIOSFR, DBF ; Value is transmitted using reserved word SIOSFR.

DBF3 DBF2 DBF1 DBF0

0 1 1 0 0 1 0 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Don't care Don't care

0 1 1 0 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

PUT SIOSFR, DBF

Data buffer

8-bit data

SIOSFR (Peripheral address 01H)

147

CHAPTER 13 PERIPHERAL HARDWARES

13.4.4 Reading Values from the Shift Register

A value is read from the shift register via the data buffer (DBF) using the GET instruction. The shift register

has peripheral address 01H and only the eight low-order bits (DBF1, DBF0) are valid. Executing the GET

instruction does not affect the eight high-order bits of DBF.

Figure 13-27. Reading a Value from the Shift Register

GET DBF, SIOSFR; Example of using reserved words DBF and SIOSFR

DBF3 DBF2 DBF1 DBF0

0 1 1 0 0 1 0 0

b3 b2 b1 b0 b3 b2 b1 b0b3 b2 b1 b0b3 b2 b1 b0

Retained Retained

0 1 1 0 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

GET DBF, SIOSFR

Data buffer

8-bit data

SIOSFR (Peripheral address 01H)

148

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

149

CHAPTER 14 INTERRUPT FUNCTIONS

CHAPTER 14 INTERRUPT FUNCTIONS

The µPD17149 has four internal interrupt functions and one external interrupt function. It can be used in

various applications.

The interrupt control circuit of the µPD17149 has the features listed below. This circuit enables very high-

speed interrupt handling.

(a) Used to determine whether an interrupt can be accepted with the interrupt mask enable flag (INTE)

and interrupt enable flag (IPxxx).

(b) The interrupt request flag (IRQxxx) can be tested or cleared. (Interrupt generation can be checked

by software.)

(c) Multiple interrupts are possible (up to three levels).

(d) Standby mode (STOP, HALT) can be released by an interrupt request. (Release condition can be

selected by the interrupt enable flag.)

Caution In interrupt handling, only the BCD, CMP, CY, Z, and IXE flags are saved in the stack

automatically by the hardware for up to three levels of multiple interrupts. The DBF and

WR are not saved by the hardware when peripheral hardware such as the timers or A/D

converter is accessed in interrupt handling. It is recommended that the DBF and WR be

saved in RAM by the software at the beginning of interrupt handling. Saved data can be

loaded back into the DBF and WR immediately before the end of interrupt handling.

14

150

µPD17145 SUB-SERIES USER’S MANUAL

14.1 INTERRUPT SOURCES AND VECTOR ADDRESSES

For every interrupt in the µPD17149, when the interrupt is accepted, a branch occurs to the vector address

associated with the interrupt source. This method is called the vectored interrupt method. Table 14-1 lists

the interrupt sources and vector addresses.

If two or more interrupt requests occur or multiple suspended interrupt requests are enabled at the same

time, they are handled according to priorities shown in Table 14-1.

Table 14-1. Interrupt Source Types

Interrupt source Priority Vector IRQ flag IP flag IEG flag Internal/ Remarks
address external

INT pin 1 0005H IRQ IP IEGMD0,1 External Rising edge or falling
 (RF: 0FH, bit 0) RF: 3FH, RF: 2FH, RF: 1FH edge can be selected.

bit 0 bit 0

Timer 0 2 0004H IRQTM0 IPTM0 – Internal
RF: 3EH, RF: 2FH,
bit 0 bit 1

Timer 1 3 0003H IRQTM1 IPTM1 – Internal
RF: 3DH, RF: 2FH,
bit 0 bit 2

Basic interval timer 4 0002H IRQBTM IPBTM – Internal
RF: 3CH, RF: 2FH,
bit 0 bit 3

Serial interface 5 0001H IRQSIO IPSIO – Internal
RF: 3BH, RF: 2EH,
bit 0 bit 0

151

CHAPTER 14 INTERRUPT FUNCTIONS

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT

The flags of the interrupt control circuit are explained below.

(1) Interrupt request flag and the interrupt enable flag

The interrupt request flag (IRQxxx) is set to 1 when an interrupt request occurs. When interrupt handling

is executed, the flag is automatically cleared to 0.

An interrupt enable flag (IPxxx) is provided for each interrupt request flag. If the flag is 1, an interrupt

is enabled. If it is 0, the interrupt is disabled.

(2) EI/DI instruction

The EI/DI instruction is used to determine whether an accepted interrupt is to be executed.

If the EI instruction is executed, the interrupt enable flag (INTE) for enabling interrupt reception is set to

1 (when an interrupt is accepted, INTE is cleared to 0). Since the INTE flag is not registered in the register

file, flag status cannot be checked by instructions.

The DI instruction clears the INTE flag to 0 and disables all interrupts.

At reset the INTE flag is cleared to 0 and all interrupts are disabled.

Table 14-2. Interrupt Request Flag and Interrupt Enable Flag

Interrupt request flag Signal for setting the interrupt request flag Interrupt enable flag

IRQ Set by edge detection of an INT pin input signal. IP
A detection edge is selected by IEGMD0 or
IEGMD1.

IRQTM0 Set by a match signal from timer 0. IPTM0

IRQTM1 Set by a match signal from timer 1. IPTM1

IRQBTM Set by an overflow (reference time interval IPBTM
signal) from the basic interval timer.

IRQSIO Set by a serial data transmission end signal IPSIO
from the serial interface.

152

µPD17145 SUB-SERIES USER’S MANUAL

Figure 14-1. Interrupt Control Register (1/7)

Note Since the INT flag is not latched, it changes ac-

cording to the logical status of the pin. Once the

IRQ flag is set, however, the flag remains set until

an interrupt is accepted.

The POKE instruction cannot be used with ad-

dress 0FH.

*

*
*

0

INT INT pin status

The logical status of the INT signal that has passed

through the noise eliminator is 0 during PEEK instruction

execution.

1

The logical status of the INT signal that has passed

through the noise eliminator is 1 during PEEK instruction

execution.

RF: 0FH

Read = R, write = W

Note

Bit 3 Bit 2 Bit 1 Bit 0

R

0 0 0

Read/write

Initial value when reset

INT

0 0 0

0

IEGMD1

Interrupt at the rising edge

RF: 1FH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 IEGMD1

Read/write

Initial value when reset 0 0 0

IEGMD0

0 Interrupt at the falling edge

1
Interrupt at both edges

1

0

IEGMD0

1

0

1

Selection of the interrupt detection

edge of the INT pin

153

CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (2/7)

Remark If TMORES is set to 1, IRQTMO is cleared to

0.

0

IRQ

No interrupt request has been issued from the INT

pin or an INT pin interrupt is being handled.

1
An interrupt request from the INT pin occurs or an

INT pin interrupt is being held.

0

An in upt request from the INT pin is forcibly released.

1 An interrupt request from the INT pin is forced to occur.

RF: 3FH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQ

0 0 0

INT pin interrupt request

INT pin interrupt request

At reading

At writing

IRQ

0

IRQTM0

No interrupt request has been issued from timer 0

or a timer 0 interrupt is being handled.

1

The contents of the timer 0 count register matches

that of the timer 0 modulo register and an interrupt

request occurs. Or a timer 0 interrupt request is

being held.

0 An interrupt request from timer 0 is forcibly released.

1 An interrupt request from timer 0 is forced to occur.

RF: 3EH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQTM0

0 0 0

IRQTM0

TM0 interrupt request

TM0 interrupt request

At reading

At writing

154

µPD17145 SUB-SERIES USER’S MANUAL

0

IRQTM1

No interrupt request has been issued from timer 1

or a timer 1 interrupt is being handled.

1

The contents of the timer 1 count register matches

that of the timer 1 modulo register and an interrupt

request occurs. Or a timer 1 interrupt request is

being held.

0 An interrupt request from timer 1 is forcibly released.

1 An interrupt request from timer 1 is forced to occur.

RF: 3DH

Read = R, write = W

1

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQTM1

0 0 0

IRQTM1

TM1 interrupt request

TM1 interrupt request

At reading

At writing

0

IRQBTM

No interrupt request has been issued from the

basic interval timer or a basic interval timer

interrupt is being handled.

1

The basic interval timer overflows and an interrupt

request occurs. Or a basic interval timer interrupt

request is being held.

0

IRQBTM

An interrupt request from the basic interval timer

is forcibly released.

1
An interrupt request from the basic interval timer

is forced to occur.

RF: 3CH

Read = R, write = W

1

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQBTM

0 0 0

BTM interrupt request

BTM interrupt request

At reading

At writing

Figure 14-1. Interrupt Control Register (3/7)

Remark If TM1RES is set to 1, IRQTM1 is cleared to

0. IRQTM1 is cleared to 0 also immediately

after the execution of the STOP instruction.

Figure 14-1. Interrupt Control Register (4/7)

Remark If BTMRES is set to 1, IRQBTM is cleared to

0.

*

155

CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (5/7)

Serial interface transmission is completed and an

interrupt request occurs. Or, a serial interface

interrupt request is being held.

0

IRQSIO SIO interrutp request

1

0

SIO interrutp request

An interrupt request from the serial interface is

forcibly released.

1
An interrupt request from the serial interface is

forced to occur.

RF: 3BH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IRQSIO

0 0 0

IRQSIO

No interrupt request has been issued from the serial

interface or a serial interface interrupt isbeing

handled.

At reading

At writing

156

µPD17145 SUB-SERIES USER’S MANUAL

Figure 14-1. Interrupt Control Register (6/7)

Enables an interrupt from the INT pin.

If the IRQ flag is set to 1 in the EI status, executes

interrupt handling.

0

IP Enabling INT pin interrupt

1

RF: 2FH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

IPBTM IPTM1 IPTM0

Read/write

Initial value when reset

IP

0 0 0

Disables an interrupt from the INT pin.

Holds interrupt handling even when the IRQ flag is

set to 1.

Enables an interrupt from timer 0.

If the IRQTM0 flag is set to 1 in the EI status,

executes interrupt handling.

0

IPTM0

1

Disables an interrupt from timer 0.

Holds an interrupt even when the IRQTM0 flag is

set to 1.

Enables an interrupt from timer 1.

If the IRQTM1 flag is set to 1 in the EI status,

executes interrupt handling.

0

IPTM1 Enabling TM1 interrupt

1

Disables an interrupt from timer 1.

Holds an interrupt even when the IRQTM1 flag is

set to 1.

Enables an interrupt from the basic interval timer.

If the IRQBTM flag is set to 1 in the EI status,

executes interrupt handling.

0

IPBTM

1

Disables an interrupt from the basic interval timer.

Holds an interrupt even when the IRQBTM flag is

set to 1.

Enabling TM0 interrupt

Enabling BTM interrupt

157

CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (7/7)

14.3 INTERRUPT SEQUENCE

14.3.1 Receiving an Interrupt

When an interrupt is accepted, interrupt handling starts after the instruction cycle of the instruction being

executed is completed. The program flow is transferred to a vector address. Note that an interrupt during

the execution of the MOVT instruction, EI instruction, or an instruction which satisfies the skip condition starts

after two instruction cycles are completed.

When an interrupt is accepted, the INTE flag is cleared to 0. One level of the address stack register is

consumed to store the program return address, and one level of the interrupt stack register is consumed to

save PSWORD in the system register.

If two or more interrupts occur or are enabled, interrupt handling is executed in descending order of priority.

A lower-priority interrupt is held until a higher-priority interrupt is handled.

See priorities shown in Table 14-1 .

Caution PSWORD is automatically reset to 00000B after it is saved in the interrupt stack register.

RF: 2EH

Read = R, write = W

0

Bit 3 Bit 2 Bit 1 Bit 0

R/W

0 0 0

Read/write

Initial value when reset

IPSIO

0 0 0

Enables an interrupt from the serial interface.

If the IRQSIO flag is set to 1 in the EI status,

executes interrupt handling.

0

IPSIO Enabling SIO interrupt

1

Disables an interrupt from the serial interface.

Holds an interrupt even when the IRQSIO flag is

set to 1.

158

µPD17145 SUB-SERIES USER’S MANUAL

Figure 14-2. Interrupt Handling Procedure

NO

NO

YES Hold interrupt until IPxxx is set

Hold interrupt until EI instruction

is executed

Interrupt request generation

Set IRQxxx

IPxxx set?

EI instruction executed?

(INTE = 1?)

Clear INTE flag and IRQxxx associated with

accepted interrupt to 0

Decrement stack pointer by 1 (SP – 1)

Save contents of program counter in address

stack register pointed to by stack pointer

Load vector address into program counter

Save PSWORD content in interrupt stack

YES

159

CHAPTER 14 INTERRUPT FUNCTIONS

14.3.2 Return from the Interrupt Routine

Execute the RETI instruction to return from the interrupt handling routine. During the RETI instruction cycle,

processing in the figure below occurs.

Figure 14-3. Return from Interrupt Handling

Cautions 1. The INTE flag is not set for the RETI instruction.

Interrupt handling is completed. To handle a pending interrupt successively, execute

the EI instruction immediately before the RETI instruction and set the INTE flag to 1.

2. To execute the RETI instruction following the EI instruction, no interrupt is accepted

between EI instruction execution and RETI instruction execution. This is because the

EI instruction sets the INTE flag to 1 after the execution of the subsequent instruction

is completed.

Example

Load contents of address stack register pointed

to by stack pointer into program counter

Execute RETI instruction

Load contents of interrupt-dedicated stack

into PSWORD

Increment stack pointer value by one

Timer 0 interrupt generation

 Timer 1 interrupt generation (held)

EI instruction execution

Timer 0 interrupt generation (held) RETI

Timer 1 interrupt handling

EI

RETI

Timer 0 interrupt handling

Single interrupt

160

µPD17145 SUB-SERIES USER’S MANUAL

14.3.3 Timing for the Acceptance of an Interrupt

Figure 14-4 shows the timing diagram for the acceptance of an interrupt.

The µPD17149 takes 16 clock pulses to execute a single instruction. A period equal to these 16 clock pulses

is called one instruction cycle. One instruction cycle is divided, into blocks of four clock pulses, called M0

to M3.

The program recognizes the generation of an interrupt on an edge signal occurring before M2.

Figure 14-4. Timing Diagram for the Acceptance of an Interrupt (When INTE = 1, IPxxx = 1) (1/3)

<1> When an interrupt occurs before M2 of an instruction other than MOVT or EI

<2> When the skip condition for the skip instruction is satisfied in <1>

<3> When an interrupt occurs after M2 of an instruction other than MOVT or EI

Machine

cycle

Skip instruction Treated as NOP INT cycleInstruction

IRQxxx

The generation of an interrupt

is recognized.

Vector address

instruction

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1
Machine

cycle

Instruction other than

MOVT and EI INT cycle

Vector address instructionInstruction

IRQxxx

The generation of an interrupt

is recognized.

Machine

cycle

Instruction other than

MOVT and EI

Instruction other than

MOVT and EI INT cycleInstruction

IRQxxx

Vector address

instruction

The generation of an interrupt

is recognized.

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

161

CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-4. Timing Diagram for the Acceptance of an Interrupt (When INTE = 1, IPxxx = 1) (2/3)

<4> When an interrupt occurs before M2 of the MOVT instruction

<5> When an interrupt occurs before M2' of the MOVT instruction

<6> When an interrupt occurs before M2 of the EI instruction

<7> When an interrupt occurs after M2 of the EI instruction

Machine

cycle

MOVT instruction INT cycleInstruction

IRQxxx

The generation of an interrupt

is recognized.

Vector address

instruction

M0 M1 M2 M3 M0' M1' M2' M3' M0 M1 M2 M3 M0 M1

Machine

cycle

MOVT instruction INT cycleInstruction

IRQxxx

The generation of an interrupt

is recognized.

Vector address

instruction

M0 M1 M2 M3 M0' M1' M2' M3' M0 M1 M2 M3 M0 M1

Machine

cycle

EI instruction Instruction other than

MOVT or EI INT cycleInstruction

IRQxxx

The generation of an interrupt

is recognized.

Vector address

instruction

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Machine

cycle

EI instruction
Instruction other than

MOVT or EI INT cycleInstruction

IRQxxx

Vector address

instruction

The generation of an interrupt

is recognized.

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

162

µPD17145 SUB-SERIES USER’S MANUAL

Figure 14-4. Timing Diagram for the Acceptance of an Interrupt (When INTE = 1, IPxxx = 1) (3/3)

<8> When an interrupt occurs during a skip operation (treated as NOP), instigated by a skip

instruction

Remarks 1. The INT cycle is a preparatory cycle for an interrupt. During this cycle, the contents of PC

and PSWORD are saved, and IRQxxx is cleared.

2. Exceptionally, the execution of the MOVT instruction requires two instruction cycles.

3. The EI instruction is designed to prevent multiple interrupts from occurring when control is

returned from interrupt handling.

Machine

cycle

Skip instruction

Treated as NOP

INT cycleInstruction

IRQxxx

Vector address

instruction

The generation of an interrupt

is recognized.

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

163

CHAPTER 15 STANDBY FUNCTION

15

*

*

CHAPTER 15 STANDBY FUNCTION

15.1 OVERVIEW OF THE STANDBY FUNCTION

The µPD17149 can reduce its current by using the standby function. The standby function supports STOP

and HALT modes.

In the STOP mode, the system clock is stopped and the CPU current is reduced to almost only a leak current.

This mode is useful in retaining data memory contents without operating the CPU.

In the HALT mode, the oscillation of the system clock continues. However, the system clock is not supplied

to the CPU, stopping CPU operation. In this mode, current reduction is less than that in the STOP mode.

However, since the system clock is oscillating, operation can be started immediately after the HALT mode

is released. In both STOP and HALT modes, the statuses of the data memory, registers, and output latches

of the output port used immediately before the standby mode is set are maintained (except STOP 0000B).

Therefore, in order to lower consumption current for the entire system, input/output port statuses should be

set beforehand.

Table 15-1. Standby Mode Status

STOP mode HALT mode

Programmed instruction STOP instruction HALT instruction

System clock oscillator Oscillation stopped Oscillation continued

Operation status CPU • Operation stopped

RAM • The contents held immediately before setting standby mode are retained.

Port • The status existing immediately before setting standby mode is retained.Note

TM0 • Operable only when the INT input is selected • Operable
as the count pulse.

• Stopped when the system clock is selected.
(The count is retained.)

TM1 • Operation stopped. • Operable
(The count is reset to 0.)
(Count-up is also inhibited.)

BTM • Operation stopped. • Operable
(The count is retained.)

SIO • Operable only when the external clock is • Operable
selected as the serial clock.Note

A/D • Operation stoppedNote (ADCR <– 00H) • Operable

INT • Operable • Operable

Note When STOP 0000B is executed, all pins are switched to input port pins. This is also true for pins

which are also used for other purposes other than port pins.

Cautions 1. Always specify a NOP instruction immediately before STOP and HALT instructions.

2. When an interrupt request flag and the corresponding interrupt enable flag are both

set, and the associated interrupt is specified as the standby mode release condition,

standby mode is not set.

164

µPD17145 SUB-SERIES USER’S MANUAL

15.2 HALT MODE

15.2.1 Setting HALT Mode

Executing a HALT instruction sets HALT mode.

Operand b3b2b1b0 of the HALT instruction indicates the HALT mode release conditions.

Table 15-2. HALT Mode Release Conditions

Format: HALT b3b2b1b0B

Bit HALT mode release conditionsNote 1

b3 When this bit is 1, release by IRQxxx is permitted.Notes 2, 4

b2 Always 0

b1 When this bit is 1, forced release by IRQTM1 is permitted.Notes 3, 4

b0 When this bit is 1, release by RLS input is permitted.Note 4

Notes 1. When HALT 0000B is specified, HALT mode can be released only by reset (RESET input or

POC).

2. IPxxx must be 1.

3. HALT mode is released regardless of the IPTM1 status.

4. If a HALT instruction is executed when IRQxxx = 1 or when the RLS input is low, the HALT

instruction is ignored (treated as a NOP instruction), and HALT mode is not set.

15.2.2 Starting Address After HALT Mode is Released

The starting address depends on the release conditions and interrupt enable conditions.

Table 15-3. Starting Address After HALT Mode is Released

Release condition Starting address after release

RESETNote1 Address 0

RLS Address subsequent to the HALT instruction

IRQxxxNote2 For DI, address subsequent to the HALT instruction

For EI, interrupt vector
(When more than one IRQxxx is set, the interrupt vector having the highest priority)

Notes 1. RESET input or POC is valid as reset.

2. Except when forced release is made with IRQTM1, IPxxx must be 1.

*

*

165

CHAPTER 15 STANDBY FUNCTION

Figure 15-1. Releasing HALT Mode

(a) Releasing HALT mode by RESET input

WAIT a: Wait time until TM1 counts 256 source clock pulses (system clock/128)

256 x 128/fx + (approximately 4 ms when fx = 8 MHz)

(b) Releasing HALT mode by RLS input

(c) Releasing HALT mode by IRQxxx (DI status)

(d) Releasing HALT mode by IRQxxx (EI status)

HALT mode System reset WAIT a Operating mode
(starting at address 0)

Operating mode

HALT instruction execution TM1 count up

RESET

HALT mode Operating modeOperating mode

HALT instruction execution

RLS

HALT mode Operating modeOperating mode

HALT instruction execution

IRQxxx

HALT mode Operating modeOperating mode

HALT instruction execution

IRQxxx

Interrupt handling accepted

166

µPD17145 SUB-SERIES USER’S MANUAL

15.2.3 HALT Setting Conditions

(1) Release by RLS input

No special register setting is needed.

Caution If the P0F 0/RLS pin is low when a HALT instruction is executed, the HALT instruction is

ignored (regarded as a NOP instruction), such that HALT mode is not set.

(2) Forced release by IRQTM1

Setting conditions

When the external clock is used • Timer 0 and timer 1 are set as a 16-bit timer.
for release (TM0CK1 = 1, TM0CK0 = 1, TM1CK1 = 1, TM1CK0 = 1)

• Timer 0 and timer 1 are operable. (TM0EN = 1, TM1EN = 1)
• The timer 1 interrupt request flag is cleared to 0. (IRQTM1 = 0)

When the internal clock is used • Timer 1 is operable.
for release • The timer 1 interrupt request flag is cleared to 0. (IRQTM1 = 0)

(3) Release by an interrupt request flag (IRQxxx)

• Ready the peripheral hardware to be used to release HALT mode.

Timer 0 Operable. (TM0EN = 1)

Timer 1 Operable. (TM1EN = 1)

Timer 0 + timer 1 For timer 1, the count up signal output by timer 0 is used. (TM1CK1 = 1),
TM1CK0 = 1)
Timer 0 and timer 1 are operable. (TM0EN = 1, TM1EN = 1)

Basic interval timer Always operable.

Serial interface The serial interface circuit is operable. (SIOTS = 1, SIOEN = 1)

INT pin Edge selection setting

• Clear the interrupt request flag (IRQxxx) of the peripheral hardware used for releasing HALT mode to

0.

• Set the interrupt enable flag (IPxxx) of the peripheral hardware to be used to release HALT mode to

1.

Caution Always specify a NOP instruction immediately before a HALT instruction. When a HALT

instruction is preceded by a NOP instruction, the time needed to execute one instruction

is generated between the IRQxxx manipulation instruction and the HALT instruction.

Therefore, when the CLR1 IRQxxx instruction is specified, for example, the result of the

IRQ333 clear operation is reflected in the execution of the HALT instruction. (See

Example 1.) If a NOP instruction is not specified immediately before a HALT instruction,

however, the result of executing the CLR1 IRQxxx instruction is not reflected in the

HALT instruction, hence HALT mode is not set. (See Example 2.)

*

167

CHAPTER 15 STANDBY FUNCTION

Example 1. Correct program
......

(Sets IRQxxx.)
.....

CLR1 IRQxxx

NOP ; Place a NOP instruction before the HALT instruction.

; (Clearing IRQxxx correctly affects the HALT instruction.)

HALT 1000B ; Executes the HALT instruction correctly (enters the HALT mode).
...............

Example 2. Incorrect program
.....

(Sets IRQxxx.)
......

CLR1 IRQxxx ; Clearing IRQxxx does not affect the HALT instruction.

; (It affects the instruction after the HALT instruction.)

HALT 1000B ; Ignores the HALT instruction (does not enter the HALT mode).
................

168

µPD17145 SUB-SERIES USER’S MANUAL

15.3 STOP MODE

15.3.1 Setting STOP Mode

Executing a STOP instruction results in STOP mode being set.

Operand b3b2b1b0 of the STOP instruction indicates the STOP mode release conditions.

Table 15-4. STOP Mode Release Conditions

Format: STOP b3b2b1b0B

Bit STOP mode release conditionNote 1

b3 When this bit is 1, release by IRQxxx is permitted.Notes 2, 4

b2 Always 0

b1 Always 0

b0 When this bit is 1, release by RLS input is permitted.Note 3, 4

Notes 1. When STOP 0000B is specified, STOP mode can be released only with reset (RESET input or

POC). When STOP 0000B is executed, the microcomputer is initialized to the state existing

immediately after the reset.

2. IPxxx must be 1. STOP mode cannot be released with IRQTM1.

3. Setting only b0 to 1 is not allowed. (STOP 0001B is inhibited.) To set b0 to 1, b3 must also be

set to 1.

4. Even when the STOP instruction is executed when IRQxxx = 1 or when the RLS input is low,

STOP mode is ignored (regarded as a NOP instruction), such that STOP mode is not set.

15.3.2 Starting Address After STOP Mode is Released

The starting address depends on the release conditions and interrupt enable conditions.

Table 15-5. Starting Address After STOP Mode is Released

Release condition Starting address after release

RESETNote 1 Address 0

RLS Address subsequent to the STOP instruction

IRQxxxNote 2 For DI, address subsequent to the STOP instruction

For EI, interrupt vector
(When more than one IRQxxx is set, the interrupt vector having the highest priority)

Notes 1. Only RESET input and POC are valid as reset.

2. IPxxx must be 1. STOP mode cannot be released with IRQTM1.

*

*

*

169

CHAPTER 15 STANDBY FUNCTION

Figure 15-2. Releasing STOP Mode (1/2)

(a) Releasing STOP mode RESET input

WAIT b: Wait time until TM1 counts 256 source clock pulses(system clock/128)

256 x 128/fx + a (approximately 4 ms when fx = 8 MHz)

a: Oscillation development time (which depends on the resonator)

(b) Releasing STOP mode by RLS input

WAIT c: Wait time until TM1 counts n + 1 source clock pulses (system clock/m)

(n + 1) x m/fx + a (n and m are the values used immediately before STOP

mode is set)

a: Oscillation development time (which depends on the resonator)

(c) Releasing STOP mode by IRQxxx (DI status)

WAIT c: Wait time until TM1 counts n + 1 source clock pulses (system clock/m)

(n + 1) x m/fx + a (n and m are the values used immediately before STOP

mode is set)

a: Oscillation development time (which depends on the resonator)

STOP mode System reset WAIT b Operating mode
(starting at address 0)

Operating mode

STOP instruction execution TM1 count up

RESET

STOP mode WAIT cOperating mode

STOP instruction execution

RLS

TM1 count up

Operating mode

STOP mode Operating mode

STOP instruction execution

IRQxxx

TM1 count up

WAIT cOperating mode

*

*

170

µPD17145 SUB-SERIES USER’S MANUAL

Figure 15-2. Releasing STOP Mode (2/2)

(d) Releasing STOP mode by IRQxxx (EI status)

WAIT c: Wait time until TM1 counts n + 1 source clock pulses (system clock/m)

(n + 1) x m/fx + a (n and m are the values used immediately before STOP

mode is set)

a: Oscillation development time (which depends on the resonator)

15.3.3 STOP Setting Conditions

(1) Release by RLS input

• Set the modulo register value for timer 1 (generation of an oscillation settling time).

Caution When the POF 0/RLS pin is low during the STOP instruction execution, the STOP

instruction is ignored (regarded as a NOP instruction) and STOP mode is not set.

STOP mode WAIT c Operating modeOperating mode

STOP instruction execution
TM1 count up, interrupt
handling accepted

IRQxxx

*

*

*

171

CHAPTER 15 STANDBY FUNCTION

(2) Release by IRQxxx

Release by IRQ pin • Select an edge (IEGMD1, IEGMD0) for the signal input to the INT pin.
• Set the modulo register value for timer 1 (generation of an oscillation settling time).
• Clear the INT pin interrupt request flag (IRQ) to 0.
• Set the INT pin interrupt enable flag (IP) to 1.

Release by IRQSIO • Set the external clock input on the SCK pin as the source clock (SIOCK1 = 0,
SIOCK0 = 0).

• Make the serial interface operable (SIOTS = 1).
• Set the modulo register value for timer 1 (generation of an oscillation settling time).
• Clear the serial interface interrupt request flag (IRQSIO) to 0.
• Set the serial interface interrupt enable flag (IPSIO) to 1.

Release by IRQTM • Set the external clock input on the INT pin as the source clock of timer 0 (TM0CK1
= 1,TM0CK0 = 1).

• Set the modulo register value for timer 0.
• Set the modulo register value and source clock for timer 1 (generation of an

oscillation settling time).
• Make timer 0 operable (TM0EN = 1).
• Clear the timer 0 interrupt request flag (IRQTM0) to 0.
• Set the timer 0 interrupt enable flag (IPTM0) to 1.

Caution Always specify a NOP instruction immediately before a STOP instruction. When a STOP

instruction is preceded by a NOP instruction, the time needed to execute one instruction

is generated between the IRQxxx manipulation instruction and the STOP instruction.

Therefore, when the CLR1 IRQxxx instruction is specified, for example, the result of the

IRQxxx clear operation is reflected in the execution of the STOP instruction. (See

Example 1.) If a NOP instruction is not specified immediately before a STOP instruction,

however, the result of executing the CLR1 IRQxxx instruction is not reflected in the

STOP instruction, hence STOP mode is not set. (See Example 2.)

172

µPD17145 SUB-SERIES USER’S MANUAL

Example 1. Correct program
......

(Sets IRQxxx.)
.....

CLR1 IRQxxx

NOP ; Place a NOP instruction before the STOP instruction.

; (Clearing IRQxxx correctly affects the STOP instruction.)

STOP 1000B ; Executes the STOP instruction correctly (enters the STOP mode).
...............

Example 2. Incorrect program
.....

(Sets IRQxxx.)
......

CLR1 IRQxxx ; Clearing IRQxxx does not affect the STOP instruction.

; (It affects the instruction after the STOP instruction.)

STOP 1000B ; Ignores the STOP instruction (does not enter the STOP mode).
................

173

CHAPTER 16 RESET

CHAPTER 16 RESET

The µPD17149 is reset when a reset signal is applied to the RESET pin, when the incorporated POC circuit

detects a supply voltage drop, when the watchdog timer function detects a program crush, or when the address

stack overflows or underflows. The incorporated POC circuit is specified with the mask option.

16.1 RESET FUNCTIONS

The reset functions are used to initialize device operations. The operations initialized depend on the reset

type.

Table 16-1. Hardware Statuses after Reset

 Reset type • RESET input • RESET input in • Watchdog timer
during operation the standby mode overflow

• Reset by the • Reset by the incorpo- • Stack overflow or
incorporated POC rated POC underflow

Hardware circuit circuit in the standby
mode

Program counter 0000H 0000H 0000H

Port Input/output Input Input Input

Output latch content 0 0 Not defined

General-purpose General- purpose Not defined Status before reset is Not defined
data memory data memory retained.

(excluding DBF)

DBF Not defined Not defined Not defined

System register 0 0 0
(excluding WR)

WR Not defined Status before reset is Not defined
retained.

Control register SP = 5H, IRQTM1 = 1, TM1EN = 1, SP = 5H and INT
IRQBTM = 1, and INT indicate the current indicate the current
status of the INT pin. status of the INT pin.
The others are 0. See Chapter 9. The others retain their

statuses before reset.

Timer 0 Count register 00H 00H Timer 0: 00H
and timer 1 Timer 1: Not defined

Modulo register FFH FFH FFH

Basic interval timer binary counter Not defined Not defined Not defined. 40H for
watchdog timer
overflow

Serial interface Shift register Not defined Status before reset is Not defined
(SIOSFR) retained.

Serial output latch 0 0 Not defined

A/D converter data register (ADCR) 00H 00H 00H

16

*

*

*

174

µPD17145 SUB-SERIES USER’S MANUAL

Figure 16-1. Reset Block Configuration

16.2 RESETTING

Operation when reset is caused by RESET input is shown in Figure 16-2.

If the RESET pin is set from low to high, system clock generation starts and the timer 1 generates an

oscillation settling time. Program execution starts from address 0000H.

The controller also operates in the same way when the POC circuit causes a reset.

At watchdog timer overflow reset or overflow and underflow reset of the address stack register, an

oscillation settling time (WAIT a) is not generated. Operation starts from address 0000H after initial statuses

are internally set.

Figure 16-2. Resetting

Note This is an oscillation settling time. Operating mode is set when timer 1 counts system clocks (fx)

128 x 256 times (approximately 4 ms when fx = 8 MHz).

VDD

Mask option

RESET
Internal
reset signal

POC circuit
(Mask option)

Operating mode RESET WAIT aNote Operating mode

RESET

TM1EN

TM1RES

175

CHAPTER 17 POC CIRCUIT (MASK OPTION)

CHAPTER 17 POC CIRCUIT (MASK OPTION)

The POC circuit monitors the power supply voltage. It resets the microcomputer when the power is turned

on/off. It can be used in application circuits using clock frequencies (fx) of between 400 kHz and 4 MHz.

The POC circuit can be included in the µPD17149 by specifying a mask option. The µPD17P149, however,

cannot include the POC circuit.

17

176

µPD17145 SUB-SERIES USER’S MANUAL

17.1 FUNCTIONS OF THE POC CIRCUIT

The POC circuit operates as follows:

• When VDD - VPOC, an internal reset signal is generated.

• When VDD > VPOC, the internal reset signal is released.

(VDD: power voltage, VPOC: POC-detected voltage)

Figure 17-1. Operation of the POC Circuit

Notes 1. In actual operation, an oscillation settling time, controlled by timer 1, is inserted before the

operating mode is set. The oscillation settling time is equal to the time needed to execute

approximately 2048 instructions (approximately 8 ms at 4 MHz).

2. A power supply voltage fall can cause a reset only when VPOC or a lower voltage level is

maintained for a duration equal to at least the reset detection pulse width tSAMP. Thus, there

is a delay of up to tSAMP before reset.

3. When the supply voltage (VDD) is less than 2.7 V, operations of all functions of the µPD17149

are not guaranteed. The POC circuit, however, is designed to generate an internal reset signal

whenever possible, regardless of whether an oscillation is received. So, an internal reset should

occur when the voltage reaches a level at which the internal circuit can operate.

Remark For the values of VPOC and tSAMP, refer to "ELECTRICAL CHARACTERISTICS" of the Data

Sheet.

VDD

5.5 V

4.5 V

VPOC

2.7 V

0 V

Note 3 Note 3

t

Internal reset

signal

Operating mode Reset

Guaranteed operating range

Note 1 Note 2

Reset

177

CHAPTER 17 POC CIRCUIT (MASK OPTION)

17.2 CONDITIONS UNDER WHICH THE POC CIRCUIT MAY BE USED

The POC circuit can be used when the application circuit satisfies the following conditions:

• The application circuit is not required to provide high reliabilityNote .

• The supply voltage (VDD) of the application circuit is between 4.5 V and 5.5 V.

• The system clock frequency (fx) of the application circuit is between 400 kHz and 4 MHz.

• The supply voltage (VDD) characteristics satisfy the POC circuit specifications (see Section 17.4).

Note When the POC circuit is used with an application circuit requiring high reliability, be sure to design

the POC circuit so that the RESET signal is input from the outside.

Caution When the POC circuit is used, the current drawn in standby mode will be slightly higher

than when the circuit is not used.

Remark POC circuit operation is guaranteed at 2.7 V to 5.5 V.

17.3 CAUTIONS FOR USING THE POC CIRCUIT

The POC circuit is designed in a fail-safe configuration. It has an auxiliary function by which if the supply

voltage changes abruptly even within the rated range (VDD = 4.5 to 5.5 V), a reset signal is issued as much

as possible to avoid program crashes.(Note)

Note that if the supply voltage does not meet the conditions listed below, the POC circuit may cause a reset.

• Standard and special (A) products

• The variation (ÐV) of the supply voltage must be within 100 mV.

• If the variation of the supply voltage is not within 100 mV, the variation slant (ÐV/Ðt) must be within

3 mV/µs.

• Special (A1) products

• The variation (ÐV) of the supply voltage must be within 80 mV.

• If the variation of the supply voltage is not within 80 mV, the variation slant (ÐV/Ðt) must be within 2

mV/µs.

*

178

µPD17145 SUB-SERIES USER’S MANUAL

Figure 17-2. Supply Voltage Variation

Note The reset function based on supply voltage variation is of auxiliary nature. It does not assure that

a reset occurs without failure. There is no condition to assure that a reset occurs based on this

auxiliary function. Do not count on this function when designing.

5.5 V
VDD

4.5 V

0 V

V

t

t

179

CHAPTER 17 POC CIRCUIT (MASK OPTION)

17.4 SUPPLY VOLTAGE CHARACTERISTIC CONSIDERATIONS AND POC CIRCUIT

SPECIFICATIONS

17.4.1 Supply Voltage Fall Speed t POCS

Consider an application circuit operating at supply voltage V (4.5 - V - 5.5 V). For simplicity, suppose that

the power supply voltage fall shows a simple attenuation characteristic, and that the characteristic v(t) can

be expressed as follows:

v(t) = V e–(t/T) (T: Time constant for the voltage fall)

Immediately after the voltage starts falling (t = 0), the fall speed (inclination of the fall) is maximized. At

this point, the specification of the supply voltage fall speed tPOCS must be satisfied.

Therefore, the power supply must have the following voltage fall time constant:

T = V/tPOCS

Substituting actual values into the expression, we have:

T = 5.5[V]/0.08[V/ms] = 68.75 [ms]

Therefore, a minimum time constant of approximately 70 ms is required for the power supply voltage fall.

Caution The above example assumes that the supply voltage fall characteristic is expressed as v(t)

= V eeeee–(t/T). This example should be used only as a guideline for application circuit design.

17.4.2 Reset Detection Pulse Width t SAMP

A power supply voltage fall can cause a reset only when VPOC or a lower voltage level is maintained for

a period of at least the reset detection pulse width tSAMP.

Even when a momentary power failure occurs, reset by the POC circuit prevents a runaway status if the

period of tSAMP is assured.

17.5 CHECKING THE POC CIRCUIT OPERATION STATUS EXTERNALLY

Perform programming so that a low signal is output from an externally pulled-up I/O port.

When the POC circuit functions and causes a reset, the I/O port is set to input mode. So, the port goes

high.

By observing the port status, POC circuit operation within the µPD17149 operating supply voltage range

(VDD = 2.7 V to 5.5 V) can be checked externally.

180

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

181

CHAPTER 18 NOTES ON SYSTEM CLOCK OSCILLATOR CONFIGURATION

CHAPTER 18 NOTES ON SYSTEM CLOCK OSCILLATOR CONFIGURATION

The system clock oscillator uses a ceramic resonator connected to pins XIN and XOUT.

Figure 18-1 shows the external circuitry used to configure the system clock oscillator.

Figure 18-1. External Circuit of the System Clock Oscillator

Caution Design a system clock oscillator so that the resistance and inductance of ground patterns

are minimized. Conform to the following guidelines when wiring at the portions sur-

rounded by dotted lines in Figure 18-1 to eliminate the influence of the wiring capacity.

• The wiring must be as short as possible.

• Signals other than those related to oscillation must not run in these areas. Any line

carrying a fluctuating high current must be kept away as far as possible.

• The grounding point of the capacitor of the oscillator must have the same potential as

that of V SS. It must not be grounded to ground patterns carrying a large current.

• No signal must be taken from the oscillator.

Figure 18-2 shows bad examples of a system clock oscillator.

18

*

GNDXINXOUT

fx

fx : System clock oscillation frequency

Ceramic resonator

µPD17149

182

µPD17145 SUB-SERIES USER’S MANUAL

Figure 18-2. Bad Examples of a System Clock Oscillator

(a) Too long wiring (b) Signals other than those related to

oscillation run.

(c) Any line carrying a fluctuating high (d) An electric current passes through the

current is close to the signal line. ground line of the oscillator. (The potentials

of the points A and B vary for point C.)

(e) A signal is taken from the oscillator.

GNDXINXOUT

Too long

GNDXINXOUTPORT

GNDXINXOUT

GNDXINXOUT

Large

current

GNDXINXOUTPORT

Large

current

A B C

183

CHAPTER 19 WRITING TO AND VERIFYING ONE-TIME PROM

CHAPTER 19 WRITING TO AND VERIFYING ONE-TIME PROM

The µPD17P149’s internal program memory consists of a 4096 x 16 bit one-time PROM.

Writing to the one-time PROM or verifying the contents of the PROM is accomplished using the pins shown

in Table 19-1. Note that address inputs are not used; instead, the address is updated using the clock input

from the CLK pin.

Caution The P0F 0/RLS/VPP pin is used as the V PP pin when writing to program memory or verifying

its contents. If an voltage equal to or more than V DD + 0.3 V is applied to the P0F 0/RLS

pin in normal operation mode, the microcontroller may cause a system crash. Protect the

pins from high voltages.

Table 19-1. Pins Used When Writing to Program Memory or Verifying Its Contents

Pin Function

VPP Pin for applying programming supply voltage.
Voltage (+12.5 V) is applied to this pin.

VDD Positive power supply pin.
+6 V is applied to this pin.

CLK Input pin for address update clocks.
Input of four pulses to this pin updates the address of the program memory.

MD0 - MD3 Input pins that select an operation mode

D0 - D7 Input/output pins for 8-bit data

19

184

µPD17145 SUB-SERIES USER’S MANUAL

19.1 DIFFERENCES BETWEEN MASK ROM PRODUCTS AND A ONE-TIME PROM PRODUCT

The µPD17P149 is a one-time PROM version of the µPD17149. The program memory of the µPD17149,

which has a mask ROM, is replaced with a one-time PROM.

Table19-2 shows differences between mask ROM products and a one-time PROM product.

The differences are only the mask ROM size and whether the mask option can be specified. The CPU

functions and built-in peripheral hardware are the same in each product. Therefore, the µPD17P149 is suited

for evaluating a program in developing a system which uses the µPD17145, µPD17147, or µPD17149.

Table 19-2. Differences between Mask ROM Products and a One-Time PROM Product

Item µPD17145 µPD17147 µPD17149 µPD17P149

ROM Mask ROM One-time PROM

1024 x 16 bits 2048 x 16 bits 4096 x 16 bits
(0000H–03FFH) (0000H–07FFH) (0000H–0FFFH)

Program counter (PC) 10 bits 11 bits 12 bits

Address register (AR)

Address stack register

Pull-up resistors of the P0F, Mask option None
RESET, and INT pins

POC circuit Mask option None

VPP pin and operating mode None Provided
selection pin

Quality grade Standard Standard
Special [(A),(A1)]

Caution Although a PROM product is highly compatible with a mask ROM product in respect of

functions, they differ in internal ROM circuits and part of electrical characteristics. Before

changing the PROM product to the mask ROM product in an application system, evaluate

the system carefully using the mask ROM product.

*

*

*

185

CHAPTER 19 WRITING TO AND VERIFYING ONE-TIME PROM

19.2 PROGRAM MEMORY WRITE/VERIFY MODES

If +6 V is applied to the VDD pin and +12.5 V is applied to the VPP pin after a certain duration of reset status

(VDD = 5 V, RESET = 0 V), the µPD17P149 enters program memory write/verify mode. A specific operating

mode is then selected by setting the MD0 through MD3 pins as follows. Leave the XOUT pin open. Connect

all pins other than those listed in Table 19-1 (including the RESET pin) to GND through pull-down resistors.

Table 19-3. Specification of Operating Modes

Operating mode specification Operating mode

VPP VDD MD0 MD1 MD2 MD3

+12.5 V +6 V H L H L Program memory address clear mode

L H H H Write mode

L L H H Verify mode

H x H H Program inhibit mode

Remark x: Don’t care. L (low) or H (high)

186

µPD17145 SUB-SERIES USER’S MANUAL

19.3 WRITING TO PROGRAM MEMORY

The procedure for writing to program memory is described below.

(1) Connect all unused pins to GND through resistors (the XOUT pin is left open). Apply a low-level signal

to the CLK pin.

(2) Apply 5 V to VDD and apply a low-level signal to the VPP pin.

(3) Wait 10 µs. Then apply 5 V to VPP.

(4) Set the mode selection pins to program memory address clear mode.

(5) Apply 6 V to VDD and 12.5 V to VPP.

(6) Select program inhibit mode.

(7) Write data in 1-ms write mode.

(8) Select program inhibit mode.

(9) Select verify mode. If the write operation is found successful, proceed to step (10). If the operation is

found unsuccessful, repeat steps (7) to (9).

(10) Perform additional write for X (number of repetitions of steps (7) to (9)) x 1 ms.

(11) Select program inhibit mode.

(12) Increment the program memory address by one on reception of four pulses on the CLK pin.

(13) Repeat steps (7) to (12) until the last address is reached.

(14) Select program memory address clear mode.

(15) Apply 5 V to the VDD and VPP pins.

(16) Turn power off.

A timing chart for program memory writing steps (2) to (12) is shown in Figure 19-1.

187

CHAPTER 19 WRITING TO AND VERIFYING ONE-TIME PROM

Figure 19-1. Timing Chart for Program Memory Writing Steps

Repeat X times

Reset

Write Verify Additional

write

Address

increment

Data input Data

output Data input

VDD+1
VDD

VDD

GND
VPP

VDD

GND

VPP

CLK

D0-D7

MD0

MD1

MD2

MD3

Hi-Z Hi-Z Hi-Z Hi-Z

188

µPD17145 SUB-SERIES USER’S MANUAL

19.4 READING PROGRAM MEMORY

(1) Connect all unused pins to GND through resistors (the XOUT pin is left open). Apply a low-level signal

to the CLK pin.

(2) Apply 5 V to VDD and apply a low-level signal to the VPP pin.

(3) Wait 10 µs. Then apply 5 V to VPP.

(4) Set the mode selection pins to program memory address clear mode.

(5) Apply 6 V to VDD and 12.5 V to VPP.

(6) Select program inhibit mode.

(7) Select verify mode. Data is output sequentially one address at a time for every four input clock pulses

on the CLK.

(8) Select program inhibit mode.

(9) Select program memory address clear mode.

(10) Apply 5 V to the VDD and VPP pins.

(11) Turn power off.

A timing chart for program memory reading steps (2) to (9) is shown below.

Figure 19-2. Timing Chart for Program Memory Reading Steps

VDD +1

VDD

GND

VPP

VDD

GND

CLK

D0-D7

MD0

MD1

MD2

MD3

VDD

VPP

Hi-Z Hi-Z
Data output Data output

“L”

Reset

189

CHAPTER 20 INSTRUCTION SET

CHAPTER 20 INSTRUCTION SET

20.1 OVERVIEW OF THE INSTRUCTION SET

(1/2)

 b15
 b14-b11

0 1
BIN HEX

0000 0 ADD r, m ADD m, #n4

0001 1 SUB r, m SUB m, #n4

0010 2 ADDC r, m ADDC m, #n4

0011 3 SUBC r, m SUBC m, #n4

0100 4 AND r, m AND m, #n4

0101 5 XOR r, m XOR m, #n4

0110 6 OR r, m OR m, #n4

0111 7 INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

RETSK

EI

DI

RETI

PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP

20

190

µPD17145 SUB-SERIES USER’S MANUAL

(2/2)

 b15
 b14-b11

0 1
BIN HEX

1000 8 LD r, m ST m, r

1001 9 SKE m, #n4 SKGE m, #n4

1010 A MOV @r, m MOV m, @r

1011 B SKNE m, #n4 SKLT m, #n4

1100 C BR addr (Page 0) CALL addr

1101 D BR addr (Page 1) MOV m, #n4

1110 E SKT m, #n

1111 F SKF m, #n

191

CHAPTER 20 INSTRUCTION SET

20.2 LEGEND

AR : Address register

ASR : Address stack register pointed to by the stack pointer

addr : Program memory address (11 low-order bits)

BANK : Bank register

CMP : Compare flag

CY : Carry flag

DBF : Data buffer

h : Halt release condition

INTEF: Interrupt enable flag

INTR : Register automatically saved in the stack when an interrupt occurs

INTSK: Interrupt stack register

IX : Index register

MP : Data memory row address pointer

 MPE : Memory pointer enable flag

m : Data memory address specified by mR and mC

 mR : Data memory row address (high-order)

 mC : Data memory column address (low-order)

n : Bit position (four bits)

n4 : Immediate data (four bits)

PAGE : Page (bit 11 of the program counter)

PC : Program counter

p : Peripheral address

 pH : Peripheral address (three high-order bits)

 pL : Peripheral address (four low-order bits)

r : General register column address

rf : Register file address

 rfR : Register file row address (three high-order bits)

 rfC : Register file column address (four low-order bits)

SP : Stack pointer

s : Stop release condition

WR : Window register

 (x) : Contents of x

192

µPD17145 SUB-SERIES USER’S MANUAL

20.3 LIST OF THE INSTRUCTION

(1/2)

Instruction Mnemonic Operand Operation
Instruction code

set Op code Operand

Add ADD r, m (r) <– (r) + (m) 00000 mR mC r

m, #n4 (m) <– (m) + n4 10000 mR mC n4

ADDC r, m (r) <– (r) + (m) + CY 00010 mR mC r

m, #n4 (m) <– (m) + n4 + CY 10010 mR mC n4

INC AR AR <– AR + 1 00111 000 1001 0000

IX IX <– IX + 1 00111 000 1000 0000

Subtract SUB r, m (r) <– (r) – (m) 00001 mR mC r

m, #n4 (m) <– (m) – n4 10001 mR mC n4

SUBC r, m (r) <– (r) – (m) – CY 00011 mR mC r

m, #n4 (m) <– (m) – n4 – CY 10011 mR mC n4

Logical OR r, m (r) <– (r) (m) 00110 mR mC r
operation

m, #n4 (m) <– (m) n4 10110 mR mC n4

AND r, m (r) <– (r) (m) 00100 mR mC r

m, #n4 (m) <– (m) n4 10100 mR mC n4

XOR r, m (r) <– (r) (m) 00101 mR mC r

m, #n4 (m) <– (m) n4 10101 mR mC n4

Test SKT m, #n CMP <– 0, if (m) n = n, then skip 11110 mR mC n

SKF m, #n CMP <– 0, if (m) n = 0, then skip 11111 mR mC n

Compare SKE m, #n4 (m) – n4, skip if zero 01001 mR mC n4

SKNE m, #n4 (m) – n4, skip if not zero 01011 mR mC n4

SKGE m, #n4 (m) – n4, skip if not borrow 11001 mR mC n4

SKLT m, #n4 (m) – n4, skip if borrow 11011 mR mC n4

Rotation RORC r 00111 000 0111 r

Transfer LD r, m (r) <– (m) 01000 mR mC r

ST m, r (m) <– (r) 11000 mR mC r

MOV @r, m if MPE = 1: (MP, (r)) <– (m) 01010 mR mC r
if MPE = 0: (BANK, mR, (r)) <– (m)

m, @r if MPE = 1: (m) <– (MP, (r)) 11010 mR mC r
if MPE = 0: (m) <– (BANK, mR, (r))

m, #n4 (m) <– n4 11101 mR mC n4

MOVTNote DBF, @AR SP <– SP – 1, ASR <– PC, PC <– AR, 00111 000 0001 0000
DBF <– (PC), PC <– ASR, SP <– SP + 1

PUSH AR SP <– SP – 1, ASR <– AR 00111 000 1101 0000

POP AR AR <– ASR, SP <– SP + 1 00111 000 1100 0000

Note Exceptionally, execution of a MOVT instruction requires two instruction cycles.

CY (r)b3 (r)b2 (r)b1 (r)b0

*

*

193

CHAPTER 20 INSTRUCTION SET

(2/2)

Instruction Mnemonic Operand Operation
Instruction code

set Op code Operand

Transfer PEEK WR, rf WR <– (rf) 00111 rfR 0011 rfC

POKE rf, WR (rf) <– WR 00111 rfR 0010 rfC

GET DBF, p DBF <– (p) 00111 pH 1011 pL

PUT p, DBF (p) <– DBF 00111 pH 1010 pL

Branch BR addr if 0000H - (PC) - 07FFH 01100 addr
PC <– addr, PAGE <– 0

if 0800H - (PC) - 0FFFHNote 01101
PC <– addr, PAGE <– 1

@AR PC <– AR 00111 000 0100 0000

Subroutine CALL addr SP <– SP – 1, ASR <– PC, 11100 addr
PC <– addr

@AR SP <– SP – 1, ASR <– PC, 00111 000 0101 0000
PC <– AR

RET PC <– ASR, SP <– SP + 1 00111 000 1110 0000

RETSK PC <– ASR, SP <– SP + 1 and skip 00111 001 1110 0000

RETI PC <– ASR, INTR <– INTSK, SP <– SP + 1 00111 100 1110 0000

Interrupt EI INTEF <– 1 00111 000 1111 0000

DI INTEF <– 0 00111 001 1111 0000

Others STOP s STOP 00111 010 1111 s

HALT h HALT 00111 011 1111 h

NOP No operation 00111 100 1111 0000

Note The µPD17145 and µPD17147 don't have page 1 (0800H to 0FFFH).

20.4 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS

Legend

flag n : Flag type symbol

< > : Data < > is omissible.

Mnemonic Operand Operation n

Built-in macro SKTn flag 1, ···flag n if (flag 1) to (flag n) = all "1", then skip 1 - n - 4

SKFn flag 1, ···flag n if (flag 1) to (flag n) = all "0", then skip 1 - n - 4

SETn flag 1, ···flag n (flag 1) to (flag n) <– 1 1 - n - 4

CLRn flag 1, ···flag n (flag 1) to (flag n) <– 0 1 - n - 4

NOTn flag 1, ···flag n if (flag n) = "0", then (flag n) <– 1 1 - n - 4
if (flag n) = "1", then (flag n) <– 0

INITFLG <NOT> flag 1, if description = NOT flag n, then (flag n) <– 0 1 - n - 4
···<<NOT> flag n> if description = flag n, then (flag n) <– 1

BANKn (BANK) <– n n = 0

194

µPD17145 SUB-SERIES USER’S MANUAL

20.5 EXPLANATION OF THE MACRO INSTRUCTIONS

20.5.1 Add Instructions

(1) ADD r, m Add data memory to a general register

<1> Instruction code

<2> Function

When CMP = 0 (r) <– (r) + (m)

The value of a data memory location is added to a general register, after which the result of the

addition is loaded into the general register.

When CMP = 1 (r) + (m)

The result of addition is not loaded into a register, but the states of the carry flag CY and zero flag

Z change according to the result of the addition.

If the addition produces a carry, the carry flag CY is set; if the addition does not produce a carry,

the carry flag CY is reset.

If the result of addition is other than 0, the zero flag Z is reset, regardless of the state of the compare

flag CMP.

If the result of addition is 0 when the compare flag is not set (CMP = 0), the zero flag Z is set.

If the result of addition is 0 when the compare flag is set (CMP = 1), the state of the zero flag Z remains

as is.

Two types of addition are supported: one type is a binary 4-bit operation, while the other is a BCD

operation. The BCD flag of PSWORD is used to specify the operation to be performed.

10 8 7 4 3 0

00000 mR mC r

195

CHAPTER 20 INSTRUCTION SET

<3> Example 1:

When row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register (RPH = 0, RPL =

0), the value of address 0.2FH is added to the value of address 0.03H, after which the result of the

addition is stored at address 0.03H.

(0.03H) <– (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

ADD MEM003, MEM02F

Example 2:

When row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register (RPH = 0,

RPL = 4), the value of address 0.2FH is added to the value of address 0.23H, after which the result

of the addition is stored at address 0.23H.

(0.23H) <– (0.23H) + (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.Note

MOV RPL, #04H ; Selects row address 2 to specify a general register.

ADD MEM023, MEM02F

Note

The general register pointer (RP) is allocated in the system register as indicated in the table above.

Accordingly, to set bank 0 and row address 2 as a general register, 00H must be stored at RPH,

and 04H must be stored at RPL.

In this case, the BCD flag is reset, so that binary 4-bit operations are performed for subsequent

arithmetic operations.

b3 b2 b1 b0 b3 b2 b1 b0

Register
RP

RPH RPL

Bit

Data 0 0 0 0 C
Row address D

BBank

196

µPD17145 SUB-SERIES USER’S MANUAL

Example 3:

The value of address 0.6FH is added to the value of address 0.03H, after which the result of the addition

is stored at address 0.03H. At this time, data memory address 0.6FH can be specified by specifying

data memory address 2FH when IXE = 1, IXH = 0, IXM = 4, and IXL = 0, that is, when IX = 0.40H.

(0.03H) <– (0.03H) + (0.6FH)

Address obtained by ORing the value (0.04H) of

the index register with data memory address

0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV IXH, #00H ; IX <– 00001000000B

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

ADD MEM003, MEM02F ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 4:

The value of address 0.3FH is added to the value of address 0.03H, after which the result of addition

is stored at address 0.03H. At this time, data memory address 0.3FH can be specified by specifying

data memory address 2FH when IXE = 1, IXH = 0, IXM = 1, and IXL = 0, that is, when IX = 0.10H.

(0.03H) <– (0.03H) + (0.3FH)

Address obtained by ORing the value (0.10H) of

the index register with data memory address

0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV IXH, #00H ; IX <– 00000010000B (0.10H)Note

MOV IXM, #01H

MOV IXL, #00H

SET1 IXE ; IXE flag <– 1

ADD MEM003, MEM02F ; IX 00000010000B (0.10H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00100111111B (0.3FH)

197

CHAPTER 20 INSTRUCTION SET

Note

The index register (IX) is allocated in the system register as indicated in the table above.

Accordingly, to set IX = 0.10H, 00H must be stored at IXH, 01H must be stored at IXM, and 00H

must be stored at IXL.

In this case, the memory pointer enable flag (MPE) is reset. This means that the memory pointer

(MP) is disabled for transfer between general registers.

<4> Caution

The first operand of the ADD r,m instruction specifies the column address of a general register.

When the following add instruction is written, the column address of the general register is 03H:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

ADD MEM013, MEM02F

(2) ADD m, #n4 Add immediate data to data memory

<1> Instruction code

<2> Function

When CMP = 0 (m) <– (m) + n4

Immediate data is added to the value of a data memory location, after which the result of the addition

is stored at the data memory location.

When CMP = 1 (m) + n4

The result of addition is not stored at a data memory location, but the states of the carry flag CY

and zero flag Z change according to the result of the addition.

If the addition produces a carry, the carry flag CY is set; if the addition does not produce a carry,

the carry flag CY is reset.

If the result of the addition is other than 0, the zero flag Z is reset, regardless of the state of the

compare flag CMP.

If the result of the addition is 0 when the compare flag is not set (CMP = 0), the zero flag Z is set.

10 8 7 4 3 0

10000 mR mC n4

b3 b2 b1 b0 b3 b2 b1 b0

Register
IX

IXH IXM

Bit

Data 0 0 0P Row address
E

M Bank

b3 b2 b1 b0

IXL

0

Column address

*
*

198

µPD17145 SUB-SERIES USER’S MANUAL

If the result of addition is 0 when the compare flag is set (CMP = 1), the state of the zero flag Z remains

as is.

Two types of addition are supported: one type is a binary 4-bit operation, while the other is a BCD

operation. The BCD flag of PSWORD is used to specify which is to be performed.

<3> Example 1:

The immediate data 5 is added to the value of address 0.2FH, after which the result of the addition

is stored at address 0.2FH.

(0.2FH) <– (0.2FH) + 5

MEM02F MEM 0.2FH

ADD MEM02F, #05H

Example 2:

The immediate data 5 is added to the value of address 0.6FH, after which the result of the addition

is stored at address 0.6FH. At this time, data memory address 0.6FH can be specified by specifying

data memory address 2FH when IXE = 1, IXH = 0, IXM = 4, and IXL = 0, that is, when IX = 0.40H.

(0.6FH) <– (0.6FH) + 05H

Address obtained by ORing the value (0.40H) of the index

register with data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag <– 1

ADD MEM02F, #05H ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 3:

The immediate data 5 is added to the value of address 0.2FH, after which the result of the addition

is stored at address 0.2FH. At this time, data memory address 0.2FH can be specified by specifying

data memory address 2FH when IXE = 1, IXH = 0, IXM = 0, and IXL = 0, that is, when IX = 0.00H.

(0.2FH) <– (0.2FH) + 05H

Address obtained by ORing the value (0.00H) of the index

register with data memory address 0.2FH

199

CHAPTER 20 INSTRUCTION SET

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV IXH, #00H ; IX <– 00000000000B

MOV IXM, #00H

MOV IXL, #00H

SET1 IXE ; IXE flag <– 1

ADD MEM02F, #05H ; IX 00000000000B (0.00H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000101111B (0.2FH)

(3) ADDC r, m Add data memory to general register with carry flag

<1> Instruction code

<2> Function

When CMP = 0 (r) <– (r) + (m) + CY

The value of a data memory location and the value of the carry flag CY are added to the value of

the general register represented by r, after which the result of the addition is stored in the general

register.

When CMP = 1 (r) + (m) + CY

The result of the addition is not loaded into a register, but the states of the carry flag CY and zero

flag Z change according to the result of the addition.

By using the ADDC instruction, an add operation involving more than one nibble data can be

performed easily. If the addition produces a carry, the carry flag CY is set; if the addition does not

produce a carry, the carry flag CY is reset.

If the result of addition is other than 0, the zero flag Z is reset, regardless of the state of the compare

flag CMP.

If the result of addition is 0 when the compare flag is not set (CMP = 0), the zero flag Z is set.

If the result of addition is 0 when the compare flag is set (CMP = 1), the state of the zero flag Z remains

as is.

Two types of addition are supported: one type is a binary 4-bit operation, while the other is a BCD

operation. The BCD flag of the program status word PSWORD is used to specify which is to be

performed.

10 8 7 4 3 0

00010 mR mC r

*

200

µPD17145 SUB-SERIES USER’S MANUAL

<3> Example 1:

When row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register, the value of the

12 bits from address 0.2DH to address 0.2FH is added to the value of the 12 bits from address 0.0DH

to address 0.0FH, after which the result of addition is stored at the 12 bits from address 0.0DH to

address 0.0FH.

(0.0FH) <– (0.0FH) + (0.2FH)

(0.0EH) <– (0.0EH) + (0.2EH) + CY

(0.0DH) <– (0.0DH) + (0.2DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

ADD MEM00F, MEM02F ; Low-order nibble

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D ; High-order nibble

Example 2:

When row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register, the value of the

12 bits from address 0.2DH to address 0.2FH is shifted one bit to the left, together with the carry

flag.

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #04H ; Selects row address 2 to specify a general register.

MOV BANK, #00H ; Selects bank 0 of the data memory.

ADDC MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

CY

(Carry flag)

Bank 0

0DH

Bank 0

0EH

Bank 0

0FH

CY

(Carry flag)

201

CHAPTER 20 INSTRUCTION SET

Example 3:

The value of the 12 bits from address 0.40H to address 0.42H is added to the value of the 12 bits

from address 0.0DH to address 0.0FH, after which the result of the addition is stored in the 12 bits

from address 0.0DH to address 0.0FH.

(0.0DH) <– (0.0DH) + (0.40H)

(0.0EH) <– (0.0EH) + (0.41H) + CY

(0.0FH) <– (0.0FH) + (0.42H) + CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag <– 1

ADD MEM00D, MEM000 ; (0.0DH) <– (0.0DH) + (0.40H) : Low-order nibble

ADDC MEM00E, MEM001 ; (0.0EH) <– (0.0EH) + (0.41H)

ADDC MEM00F, MEM002 ; (0.0FH) <– (0.0FH) + (0.42H) : High-order nibble

(4) ADDC m, #n4 Add immediate data to data memory with carry flag

<1> Instruction code

<2> Function

When CMP = 0 (m) <– (m) + n4 + CY

Immediate data and the value of the carry flag CY are added to the value of a data memory location,

after which the result of the addition is stored at the data memory location.

When CMP = 1 (m) + n4 + CY

The result of the addition is not stored at a data memory location, but the states of the carry flag

CY and zero flag Z change according to the result of the addition.

If the addition produces a carry, the carry flag CY is set; if the addition does not produce a carry,

the carry flag CY is reset.

If the result of the addition is other than 0, the zero flag Z is reset, regardless of the state of the

compare flag CMP.

10 8 7 4 3 0

10010 mR mC n4

202

µPD17145 SUB-SERIES USER’S MANUAL

If the result of the addition is 0 when the compare flag is not set (CMP = 0), the zero flag Z is set.

If the result of the addition is 0 when the compare flag is set (CMP = 1), the state of the zero flag

Z remains as is.

Two types of addition are supported: one type is a binary 4-bit operation, while the other is a BCD

operation. The BCD flag of PSWORD is used to specify which is to be performed.

<3> Example 1:

The immediate data 5 is added to the value of the 12 bits from address 0.0DH to address 0.0FH,

after which the result of the addition is stored at address 0.0DH to address 0.0FH.

(0.0FH) <– (0.0FH) + 05H

(0.0EH) <– (0.0EH) + CY

(0.0DH) <– (0.0DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

ADD MEM00F, #05H

ADDC MEM00E, #00H

ADDC MEM00D, #00H

Example 2:

The immediate data 5 is added to the value of the 12 bits from address 0.4DH to address 0.4FH,

after which the result of the addition is stored at address 0.4DH to address 0.4FH.

(0.4FH) <– (0.4FH) + 05H

(0.4EH) <– (0.4EH) + CY

(0.4DH) <– (0.4DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag <– 1

ADD MEM00F, #5 ; (0.4FH) <– (0.4FH) + 5H

ADDC MEM00E, #0 ; (0.4EH) <– (0.4EH) + CY

ADDC MEM00D, #0 ; (0.4DH) <– (0.4DH) + CY

203

CHAPTER 20 INSTRUCTION SET

(5) INC AR Increment address register

<1> Instruction code

<2> Function

AR <– AR + 1

The value of the address register AR is incremented by 1.

<3> Example 1:

The value 1 is added to the value of the 16 bits from AR3 to AR0 (address register) in the system

register, after which the result of the addition is stored at AR3 to AR0.

AR0 <– AR0 + 1

AR1 <– AR1 + CY

AR2 <– AR2 + CY

AR3 <– AR3 + CY

INC AR

This operation can be performed by using add instructions as described below.

ADD AR0, #01H

ADDC AR1, #00H

ADDC AR2, #00H

ADDC AR3, #00H

Example 2:

Table data is transferred in blocks of 16 bits (1 address) to the data buffer (DBF) by using table

reference instructions. (For details of the table reference instructions, see Section 10.2.3 .)

ORG 10H

DW 0F3FFH

DW 0A123H

DW 0FFF1H

DW 0FFF5H

DW 0FF11H

MOV AR3, #0H ; Table data address

MOV AR2, #0H ; Loads 0010H into the address register.

MOV AR1, #1H

MOV AR0, #0H

00111 000 1001 0000

…
…

…
…

…

204

µPD17145 SUB-SERIES USER’S MANUAL

LOOP :

MOVT DBF, @AR ; Reads table data into DBF.

(Processing which refers table data)

INC AR ; Increments the address register by 1.

BR LOOP

<4> Caution

The number of bits available with the address register AR (AR0-AR3) depends on the product being

used. When using the address register, always check the data sheet of the product being used.

(6) INC IX Increment index register

<1> Instruction code

<2> Function

IX <– IX + 1

The value of the index register IX is incremented.

<3> Example 1:

The value 1 is added to the 12 bits of the index register (consisting of IXH, IXM, and IXL) in the system

register, after which the result of the addition is stored at IXH, IXM, and IXL.

IXL <– IXL + 1

IXM <– IXM + CY

IXH <– IXH + CY

INC IX

This operation can be performed by using add instruction, as described below.

ADD IXL, #01H

ADDC IXM, #00H

ADDC IXH, #00H

Example 2:

The values stored in the data memory locations 0.00H to 0.73H are cleared to 0 by using the index

register.

MEM000 MEM 0.00H

MOV IXH, #00H ; Stores 00H of bank 0 into the index register.

MOV IXM, #00H ;

MOV IXL, #00H

00111 000 1000 0000

…
…

*

205

CHAPTER 20 INSTRUCTION SET

RAM clear:

SET1 IXE ; IXE flag <– 1

MOV MEM000, #00H ; Writes 0 to the data memory location indicated by

; the index register.

CLR1 IXE ; IXE flag <– 0

INC IX

SET2 CMP, Z ; CMP flag <– 1, Z flag <– 1

SUB IXL, #03H ; Checks if the value of the index register is 73H of

SUB IXM, #07H ; bank 0.

SUB IXH, #00H ;

SKT1 Z ; Loops until the value of the index register becomes

BR RAM clear ; 73H of bank 0.

20.5.2 Subtract Instructions

(1) SUB r, m Subtract data memory from general register

<1> Instruction code

<2> Function

When CMP = 0 (r) <– (r) – (m)

The value of a data memory location is subtracted from the value stored in a general register, after

which the result of the subtraction is loaded into the general register.

When CMP = 1 (r) – (m)

The result of the subtraction is not loaded into a register, but the states of the carry flag CY and

zero flag Z change according to the result of the subtraction.

If the subtraction produces a borrow, the carry flag CY is set; if the subtraction does not produce

a borrow, the carry flag CY is reset.

If the result of the subtraction is other than 0, the zero flag Z is reset, regardless of the state of the

compare flag CMP.

If the result of the subtraction is 0 when the compare flag is not set (CMP = 0), the zero flag Z is

set.

If the result of the subtraction is 0 when the compare flag is set (CMP = 1), the state of the zero

flag Z remains as is.

Two types of subtraction are supported: one type is a binary 4-bit operation, while the other is a

BCD operation. The BCD flag of the program status word PSWORD is used to specify which is

to be performed.

10 8 7 4 3 0

00001 mR mC r

206

µPD17145 SUB-SERIES USER’S MANUAL

<3> Example 1:

When row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register (RPH = 0, RPL =

0), the value of address 0.2FH is subtracted from the value of address 0.03H, after which the result

of the subtraction is stored at address 0.03H.

(0.03H) <– (0.03H) – (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

SUB MEM003, MEM02F

Example 2:

When row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register (RPH = 0, RPL =

4), the value of address 0.2FH is subtracted from the value of address 0.23H, after which the result

of the subtraction is stored at address 0.23H.

(0.23H) <– (0.23H) – (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #04H ; Selects row address 2 to specify a general register.

SUB MEM023, MEM02F

Example 3:

The value of address 0.6FH is subtracted from the value of address 0.03H, after which the result

of the subtraction is stored at address 0.03H. At this time, data memory address 0.6FH can be

specified by specifying data memory address 2FH when IXE = 1, IXH = 0, IXM = 4, and IXL = 0,

that is, when IX = 0.40H.

(0.03H) <– (0.03H) – (0.6FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

SUB MEM003, MEM02F ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

207

CHAPTER 20 INSTRUCTION SET

Example 4:

The value of address 0.3FH is subtracted from the value of address 0.03H, after which the result

of the subtraction is stored at address 0.03H. At this time, data memory address 0.3FH can be

specified by specifying data memory address 2FH when IXE = 1, IXH = 0, IXM = 1, and IXL = 0,

that is, when IX = 0.10H.

(0.03H) <– (0.03H) – (0.3FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV IXH, #00H ; IX <– 00000010000B (0.10H)

MOV IXM, #01H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

SUB MEM003, MEM02F ; IX 00000010000B (0.10H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000111111B (0.3FH)

<4> Caution

The first operand of the SUB r,m instruction must specify the address of a general register. When

the following subtract instruction is written, address 03H is specified as a register:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

SUB MEM013, MEM02F

*
*

208

µPD17145 SUB-SERIES USER’S MANUAL

(2) SUB m, #n4 Subtract immediate data from data memory

<1> Instruction code

<2> Function

When CMP = 0 (m) <– (m) – n4

Immediate data is subtracted from the value stored at a data memory location, after which the result

of the subtraction is stored at the data memory location.

When CMP = 1 (m) – n4

The result of the subtraction is not stored at a data memory location, but the states of the carry flag

CY and zero flag Z change according to the result of the subtraction.

If the subtraction produces a borrow, the carry flag CY is set; if the subtraction does not produce

a borrow, the carry flag CY is reset.

If the result of the subtraction is other than 0, the zero flag Z is reset, regardless of the state of the

compare flag CMP.

If the result of the subtraction is 0 when the compare flag is reset (CMP = 0), the zero flag Z is set.

If the result of the subtraction is 0 when the compare flag is set (CMP = 1), the state of the zero

flag Z remains as is.

Two types of subtraction are supported: one type is a binary 4-bit operation, while the other is a

BCD operation. The BCD flag of the program status word PSWORD is used to specify which is

to be performed.

<3> Example 1:

The immediate data 5 is subtracted from the value stored at address 0.2FH, after which the result

of the subtraction is stored at address 0.2FH.

(0.2FH) <– (0.2FH) – 5

MEM02F MEM 0.2FH

SUB MEM02F, #05H

Example 2:

The immediate data 5 is subtracted from the value stored at address 0.6FH, after which the result

of the subtraction is stored at address 0.6FH. At this time, data memory address 0.6FH can be

specified by specifying data memory address 2FH when IXE = 1, IXH = 0, IXM = 4, and IXL = 0,

that is, when IX = 0.40H.

(0.6FH) <– (0.6FH) – 5

Address obtained by ORing the value (0.40H) of the index

register with data memory address 0.2FH

10 8 7 4 3 0

10001 mR mC n4

209

CHAPTER 20 INSTRUCTION SET

MEM02F MEM 0.2FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV IXH, #00H ; IX ¨ 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

SUB MEM02F, #05H ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 3:

The immediate data 5 is subtracted from the value stored at address 0.2FH, after which the result

of the subtraction is stored at address 0.2FH. At this time, data memory address 0.2FH can be

specified by specifying data memory address 2FH when IXE = 1, IXH = 0, IXM = 0, and IXL = 0,

that is, when IX = 0.00H.

(0.2FH) <– (0.2FH) – 5

Address obtained by ORing the value (0.00H) of the index

register with data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK0, #00H ; Selects bank 0 of the data memory.

MOV IXH, #00H ; IX <– 00000000000B (0.00H)

MOV IXM, #00H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

SUB MEM02F, #05H ; IX 00000000000B (0.00H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000101111B (0.2FH)

210

µPD17145 SUB-SERIES USER’S MANUAL

(3) SUBC r, m Subtract data memory from general register with carry flag

<1> Instruction code

<2> Function

When CMP = 0 (r) <– (r) – (m) – CY

The value of a data memory location and the value of the carry flag CY are subtracted from the value

stored at a general register, after which the result of the subtraction is stored in the general register.

By using the SUBC instruction, a subtract operation involving more than one nibble data can be

performed easily.

When CMP = 1 (r) – (m) – CY

The result of the subtraction is not loaded into a register, but the states of the carry flag CY and

zero flag Z change according to the result of the subtraction.

If the subtraction produces a borrow, the carry flag CY is set; if the subtraction does not produce

a borrow, the carry flag CY is reset.

If the result of the subtraction is other than 0, the zero flag Z is not set, regardless of the state of

the compare flag CMP.

If the result of the subtraction is 0 when the compare flag is not set (CMP = 0), the zero flag Z is

set.

If the result of the subtraction is 0 when the compare flag is set (CMP = 1), the state of the zero

flag Z remains as is.

Two types of subtraction are supported: one type is a binary 4-bit operation, while the other is a

BCD operation. The BCD flag of the program status word PSWORD is used to specify which is

to be performed.

10 8 7 4 3 0

00011 mR mC r

*

211

CHAPTER 20 INSTRUCTION SET

<3> Example 1:

When row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register, the value of the

12 bits from address 0.2DH to address 0.2FH is subtracted from the value of the 12 bits from address

0.0DH to address 0.0FH, after which the result of the subtraction is stored in the 12 bits from address

0.0DH to address 0.0FH.

(0.0FH) <– (0.0FH) – (0.2FH)

(0.0EH) <– (0.0EH) – (0.2EH) – CY

(0.0DH) <– (0.0DH) + (0.2DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

SUB MEM00F, MEM02F ; Low–order nibble

SUBC MEM00E, MEM02E

SUBC MEM00D, MEM02D ; High–order nibble

Example 2:

The value of the 12 bits from address 0.40H to address 0.42H is subtracted from the value of the

12 bits from address 0.0DH to address 0.0FH, after which the result of the subtraction is stored in

the 12 bits from address 0.0DH to address 0.0FH.

(0.0DH) <– (0.0DH) – (0.40H)

(0.0EH) <– (0.0EH) – (0.41H) – CY

(0.0FH) <– (0.0FH) + (0.42H) – CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

SUB MEM00D, MEM000 ; (0.0DH) <– (0.0DH) – (0.40H)

SUBC MEM00E, MEM001 ; (0.0EH) <– (0.0EH) – (0.41H)

SUBC MEM00F, MEM002 ; (0.0FH) <– (0.0FH) – (0.42H)

212

µPD17145 SUB-SERIES USER’S MANUAL

(4) SUBC m, #n4 Subtract immediate data from data memory with carry flag

<1> Instruction code

<2> Function

When CMP = 0 (m) <– (m) – n4 – CY

Immediate data and the value of the carry flag CY are subtracted from the value stored at a data

memory location, after which the result of the subtraction is stored at the data memory location.

When CMP = 1 (m) – n4 – CY

The result of the subtraction is not stored at a data memory location, but the states of the carry flag

CY and zero flag Z change according to the result of the subtraction.

If the subtraction produces a borrow, the carry flag CY is set; if the subtraction does not produce

a borrow, the carry flag CY is reset.

If the result of the subtraction is other than 0, the zero flag Z is reset, regardless of the state of the

compare flag CMP.

If the result of the subtraction is 0 when the compare flag is reset (CMP = 0), the zero flag Z is set.

If the result of the subtraction is 0 when the compare flag is set (CMP = 1), the state of the zero

flag Z remains as is.

Two types of subtraction are supported: one type is a binary 4-bit operation, while the other is a

BCD operation. The BCD flag of the program status word PSWORD is used to specify which is

to be performed.

<3> Example 1:

The immediate data 5 is subtracted from the value of the 12 bits from address 0.0DH to address

0.0FH, after which the result of the subtraction is stored at address 0.0DH to address 0.0FH.

(0.0FH) <– (0.0FH) – 05H

(0.0EH) <– (0.0EH) – CY

(0.0DH) <– (0.0DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SUB MEM00F, #05H

SUBC MEM00E, #00H

SUBC MEM00D, #00H

10 8 7 4 3 0

10011 mR mC n4

213

CHAPTER 20 INSTRUCTION SET

Example 2:

The immediate data 5 is subtracted from the value of the 12 bits from address 0.4DH to address

0.4FH, after which the result of the subtraction is stored at address 0.4DH to address 0.4FH.

(0.4FH) <– (0.4FH) – 05H

(0.4EH) <– (0.4EH) – CY

(0.4DH) <– (0.4DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag <– 1

SUB MEM00F, #5 ; (0.4FH) <– (0.4FH) – 5

SUBC MEM00E, #0 ; (0.4EH) <– (0.4EH) – CY

SUBC MEM00D, #0 ; (0.4DH) <– (0.4DH) – CY

214

µPD17145 SUB-SERIES USER’S MANUAL

20.5.3 Logical Instructions

(1) OR r, m OR between a general register and data memory

<1> Instruction code

<2> Function

(r) <– (r) (m)

The value stored in a general register is ORed with the value of a data memory location, after which

the result of the OR operation is stored in the general register.

<3> Example

The value (1010B) of address 0.03H is ORed with the value (0111B) stored at address 0.2FH, after

which the result (1111B) of the OR operation is stored at 0.03H.

(0.03H) <– (0.03H) (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0111B

OR MEM003, MEM02F

(2) OR m, #n4 OR between data memory and immediate data

<1> Instruction code

<2> Function

(m) <– (m) n4

The value stored at a data memory location is ORed with the immediate data, after which the result

of the OR operation is stored at the data memory location.

10 8 7 4 3 0

10110 mR mC n4

OR

03H

2FH

03H

1 0 1 0

0 1 1 1

1 1 1 1

10 8 7 4 3 0

00110 mR mC r

215

CHAPTER 20 INSTRUCTION SET

<3> Example 1:

Bit 3 (MSB) of address 0.03H is set.

(0.03H) <– (0.03H) ¦ 1000B

MEM003 MEM 0.03H
OR MEM003, #1000B

Example 2:

All bits of address 0.03H are set.

MEM003 MEM 0.03H

OR MEM003, #1111B

 or

MEM003 MEM 0.03H

MOV MEM003, #0FH

(3) AND r, m AND between general register and data memory

<1> Instruction code

<2> Function

(r) <– (r) (m)

The value stored in a general register is ANDed with the value of a data memory location, after which

the result of the AND operation is stored in the general register.

<3> Example

The value (1010B) stored at address 0.03H is ANDed with the value (0110B) stored at address

0.2FH, after which the result (0010B) of the AND operation is stored at address 0.03H.

(0.03H) <– (0.03H) (0.2FH)

x: Don't care1 x x x

0.03H

10 8 7 4 3 0

00100 mR mC r

AND

03H

2FH

03H

1 0 1 0

0 1 1 0

0 0 1 0

216

µPD17145 SUB-SERIES USER’S MANUAL

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0110B

AND MEM003, MEM02F

(4) AND m, #n4 AND between data memory and immediate data

<1> Instruction code

<2> Function

(m) <– (m) n4

The value stored at a data memory location is ANDed with the immediate data, after which the result

of the AND operation is stored at the data memory location.

<3> Example 1:

Bit 3 (MSB) of address 0.03H is reset.

(0.03H) <– (0.03H) 0111B

MEM003 MEM 0.03H

AND MEM003, #0111B

Example 2:

All bits of address 0.03H are reset.

MEM003 MEM 0.03H

AND MEM003, #0000B

 or

MEM003 MEM 0.03H

MOV MEM003, #00H

x: Don't care0 x x x

0.03H

10 8 7 4 3 0

10100 mR mC n4

217

CHAPTER 20 INSTRUCTION SET

XOR

03H

0FH

03H

1 0 1 0

0 1 1 0

1 1 0 0

Exclusive bits

(5) XOR r, m Exclusive OR between a general register and data memory

<1> Instruction code

<2> Function

(r) <– (r) (m)

The value stored in a general register is exclusive-ORed with the value stored in a data memory

location, after which the result of the XOR operation is stored in the general register.

<3> Example 1:

The value stored at address 0.03H is compared with the value stored at address 0.0FH. Any bits

for which the comparison reveals a mismatch are set, after which the values of the four bits, including

those set bits, are stored at address 0.03H. If all the bits of address 0.03H are reset (that is, the

value of address 0.03H is the same as the value of address 0.0FH), a jump to LBL1 is performed.

In other cases, a jump to LBL2 is performed.

This example can find an application where the states of alternate switches (the value of address

0.03H) are compared with an internal state (value of address 0.0FH), causing a branch to the

processing for the changed switches.

MEM003 MEM 0.03H

MEM00F MEM 0.0FH

XOR MEM003, MEM00F

SKNE MEM003, #00H

BR LBL1

BR LBL2

10 8 7 4 3 0

00101 mR mC r

218

µPD17145 SUB-SERIES USER’S MANUAL

Example 2:

The value of address 0.03H is cleared.

MEM003 MEM 0.03H

XOR MEM003, MEM003

(6) XOR m, #n4 Exclusive OR between data memory and immediate data

<1> Instruction code

<2> Function

(m) <– (m) n4

The value of a data memory location is exclusive-ORed with the immediate data, after which the

result of the XOR operation is stored at the data memory location.

<3> Example

The values of bits 1 and 3 of address 0.03H are inverted, after which the values of the four bits are

stored at address 0.03H.

MEM003 MEM 0.03H

XOR MEM003, #1010B

XOR

03H

03H

03H

0 1 0 1

0 1 0 1

0 0 0 0

XOR

03H

03H

1 1 0 0

1 0 1 0

0 1 1 0

Inverted bits

10 8 7 4 3 0

10101 mR mC n4

219

CHAPTER 20 INSTRUCTION SET

20.5.4 Evaluation Instructions

(1) SKT m, #n Skip the next instruction if data memory bits are true

<1> Instruction code

<2> Function

CMP <– 0, if (m) n=n, then skip

The value stored at a data memory location is ANDed with the immediate data n. If the result of

an AND operation is equal to n, the next instruction is skipped (executed as a NOP instruction).

<3> Example 1:

If bit 0 of address 03H is 1, a jump to AAA is performed. If the bit is 0, a jump to BBB is performed.

SKT 03H, #0001B

BR BBB

BR AAA

Example 2:

If bits 0 and 1 of address 03H are 1, the next instruction is skipped.

SKT 03H, #0011B

Example 3:

The two instructions below produce the same result.

SKT 13H, #1111B

SKE 13H, #0FH

(2) SKF m, #n Skip the next instruction if data memory bits are false

<1> Instruction code

<2> Function

CMP <– 0, if (m) n=0, then skip

The value stored at a data memory location is ANDed with the immediate data n. If the result of

the AND operation is 0, the next instruction is skipped (executed as a NOP instruction).

10 8 7 4 3 0

11110 mR mC n

x: Don't carex x 1 1

b3

Skip condition 03H

b2 b1 b0

10 8 7 4 3 0

11111 mR mC n

*

*

220

µPD17145 SUB-SERIES USER’S MANUAL

<3> Example 1:

If bit 2 of address 13H is 0, the immediate data 00H is stored at data memory address 0FH. If the

bit is 1, a jump to ABC is performed.

MEM013 MEM 0.13H

MEM00F MEM 0.0FH

SKF MEM013, #0100B

BR ABC

MOV MEM00F, #00H

Example 2:

If bits 3 and 0 of address 29H are 0, the next instruction is skipped.

SKF 29H, #1001B

Example 3:

The two instructions below produce the same result.

SKF 34H, #1111B

SKE 34H, #00H

20.5.5 Compare Instructions

(1) SKE m, #n4 Skip if the contents of data memory are equal to the immediate data

<1> Instruction code

<2> Function

(m) – n4, skip if zero

If the value stored at a data memory location is equal to the immediate data, the next instruction

is skipped (executed as a NOP instruction).

<3> Example

If the value of address 24H is 0, 0FH is transferred to address 24H. If the value is other than 0,

a jump to OPE1 is performed.

MEM024 MEM 0.24H

SKE MEM024, #00H

BR OPE1

MOV MEM024, #0FH

OPE1:

10 8 7 4 3 0

01001 mR mC n4

x: Don't care0 0

b3

Skip condition 29H

b2 b1 b0

x x

*

221

CHAPTER 20 INSTRUCTION SET

(2) SKNE m, #n4 Skip if the contents of data memory are not equal to the immediate data

<1> Instruction code

<2> Function

(m) – n4, skip if not zero

If the value stored at a data memory location is not equal to immediate data, the next instruction

is skipped (executed as a NOP instruction).

<3> Example

If the value stored at address 1FH is 1, and that stored at address 1EH is 3, a jump to XYZ is

performed. In other cases, a jump to ABC is performed.

When an 8-bit comparison is made, the following combination is used:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SKNE MEM01F, #01H

SKE MEM01E, #03H

BR ABC

BR XYZ

The same operation as that above can be performed by using the compare flag and zero flag, as

follows:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SET2 CMP, Z ; CMP flag <– 1, Z flag <– 1

SUB MEM01F, #01H

SUBC MEM01E, #03H

SKT1 Z

BR ABC

BR XYZ

(3) SKGE m, #n4 Skip if the contents of data memory are greater than or equal to the immediate data

<1> Instruction code

<2> Function

(m) – n4, skip if not borrow

If the value stored at a data memory location is greater than or equal to the immediate data, the

next instruction is skipped (executed as a NOP instruction).

10 8 7 4 3 0

01011 mR mC n4

3

00111EH

1

00011FH

10 8 7 4 3 0

11001 mR mC n4

*

*

222

µPD17145 SUB-SERIES USER’S MANUAL

<3> Example

If the 8-bit data stored at address 1FH (higher address) and 2FH (lower address) is greater than

or equal to immediate data 17H, RET is executed; if not, RETSK is executed.

MEM01F MEM 0.1FH

MEM02F MEM 0.2FH

SKGE MEM01F, #1

RETSK

SKNE MEM01F, #1

SKLT MEM02F, #8 ; 7 + 1

RET

RETSK

(4) SKLT m, #n4 Skip if the contents of data memory are less than the immediate data

<1> Instruction code

<2> Function

(m) – n4, skip if borrow

If the value stored at a data memory location is less than the immediate data, the next instruction

is skipped (executed as a NOP instruction).

<3> Example

If the value stored at address 10H is greater than or equal to immediate data 6, 01H is stored at

address 0FH. If the value of address 10H is less than immediate data 6, 02H is stored at address

0FH.

MEM00F MEM 0.0FH

MEM010 MEM 0.10H

MOV MEM00F, #02H

SKLT MEM010, #06H

MOV MEM00F, #01H

20.5.6 Rotate Instructions

(1) RORC r Rotate right general register with carry flag

<1> Instruction code

10 8 7 4 3 0

11011 mR mC n4

3 0

00111 000 0111 r

*

223

CHAPTER 20 INSTRUCTION SET

<2> Function

The value stored by the general register represented by r is rotated one bit to the right, together

with the carry flag.

<3> Example 1:

When row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register (RPH = 0, RPL =

0), the value (1000B) of address 0.00H is rotated one bit to the right to produce the value 0100B.

(0.00H) <– (0.00H) ÷ 2

MEM000 MEM 0.00H

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

CLR1 CY ; CY flag <– 0

RORC MEM000

Example 2:

When row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register (RPH = 0, RPL =

0), the value (0FA52H) of the data buffer DBF is rotated one bit to the right to change the value of

DBF to 7D29H.

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

CLR1 CY ; CY flag <– 0

RORC MEM00C

RORC MEM00D

RORC MEM00E

RORC MEM00F

1 1 1 1 1 0 1 0

0 1 1 1 1 1 0 1

0

0

0 1 0 1

0 0 1 0

0 0 1 0

1 0 0 1

CY 0CH 0DH 0EH 0FH CY

CY (r)b3 (r)b2 (r)b1 (r)b0

224

µPD17145 SUB-SERIES USER’S MANUAL

20.5.7 Transfer Instructions

(1) LD r, m Load data memory to general register

<1> Instruction code

<2> Function

(r) <– (m)

The value stored at a data memory location is loaded into a general register.

<3> Example 1:

The value stored at address 0.2FH is stored at address 0.03H.

(0.03H) <– (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

LD MEM003, MEM02F

Example 2:

The value stored at address 0.6FH is stored at address 0.03H. At this time, data memory address

0.6FH can be specified by specifying data memory address 2FH when IXE = 1, IXH = 0, IXM = 4,

and IXL = 0, that is, when IX = 0.40H.

IXH <– 00H

IXM <– 04H

IXL <– 00H

IXE flag <– 1

 (0.03H) <– (0.6FH)

Address obtained by ORing the value (040H) of the index

register with data memory address 0.2FH

10 8 7 4 3 0

01000 mR mC r

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

*
*

225

CHAPTER 20 INSTRUCTION SET

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV IXH, #00H ; IX <– 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag <– 1

LD MEM003, MEM02F

(2) ST m, r Store general register to data memory

<1> Instruction code

<2> Function

(m) <– (r)

The value stored in a general register is stored at a data memory location.

<3> Example 1:

The value of address 0.03H is stored at address 0.2FH.

(0.2FH) <– (0.03H)

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

ST 2FH, 03H ; Transfers the value of the general register to the

; data memory location.

10 8 7 4 3 0

11000 mR mC r

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

*
*

226

µPD17145 SUB-SERIES USER’S MANUAL

Example 2:

The value stored at address 0.00H is stored at address 0.18H to address 0.1FH. The data memory

locations (18H-1FH) are specified with the index register.

(0.18H) <– (0.00H)

(0.19H) <– (0.00H)

(0.1FH) <– (0.00H)

MOV IXH, #00H ; IX <– 00000000000B (0.00H)

MOV IXM, #00H

MOV IXL, #00H ; Specifies address 0.00H as a data memory

;location.

MEM018 MEM 0.18H

MEM000 MEM 0.00H

LOOP1 :

SET1 IXE ; IXE flag <– 1

ST MEM018, MEM000 ; (0.1 x H) <– (0.00H)

CLR1 IXE ; IXE flag <– 0

INC IX ; IX <– IX + 1

SKGE IXL, #08H

BR LOOP1

..............

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

227

CHAPTER 20 INSTRUCTION SET

(3) MOV @r, m Move data memory to destination indirect

<1> Instruction code

<2> Function

When MPE = 1

(MP,(r)) <– (m)

When MPE = 0

(BANK, mR ,(r)) <– (m)

The value of a data memory location is stored at the data memory location addressed by the value

of a general register. When MPE = 0, a transfer takes place within the same row address of the

same bank.

<3> Example 1:

The MPE flag is set to 0, and the value of address 0.20H is stored at address 0.2FH. The transfer

destination data memory location takes the same row address as the transfer source, and the value

of address 0.00H of the general register as its column address.

(0.2FH) <– (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag <– 0

MOV MEM000, #0FH ; Stores a column address in the general register.

MOV @MEM000, MEM020; Performs a move operation.

10 8 7 4 3 0

01010 mR mC r

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

F

228

µPD17145 SUB-SERIES USER’S MANUAL

Example 2:

The MPE flag is set to 1, and the value of address 0.20H is stored at address 0.3FH. The transfer

destination data memory location takes the value of the memory pointer MP as its row address, and

the value of address 0.00H of the general register as its column address.

(0.3FH) <– (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #00H ; Selects row address 0 to specify a general register.

MOV 00H, #0FH ; Stores a column address into the general register.

MOV MPH, #00H ; Stores a row address into the memory pointer.

MOV MPL, #03H ;

SET1 MPE ; MPE flag <– 1

MOV @MEM000, MEM020; Performs a move operation.

(4) MOV m, @r Move data memory to destination indirect

<1> Instruction code

<2> Function

When MPE = 1

(m) <– (MP,(r))

When MPE = 0

(m) <– (BANK, mR ,(r))

The value stored at the data memory location addressed by the value of a general register is stored

at another data memory location. When MPE = 0, a transfer is performed within the same row

address of the same bank.

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

F

10 8 7 4 3 0

11010 mR mC r

229

CHAPTER 20 INSTRUCTION SET

<3> Example 1:

The MPE flag is set to 0, and the value of address 0.2FH is stored at address 0.20H. The transfer

source data memory location takes the same row address as the transfer destination, and the value

of address 0.00H of the general register as its column address.

(0.20H) <– (0.2FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag <– 0

MOV MEM000, #0FH ; Stores a column address into the general register.

MOV MEM020, @MEM000; Performs a move operation.

Example 2:

The MPE flag is set to 1, and the value stored at address 0.3FH is stored at address 0.20H. The

transfer source data memory location takes the value of the memory pointer MP as its row address,

and the value of address 0.00H of the general register as its column address.

(0.20H) <– (0.3FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV MEM000, #0FH ; Stores a column address into the general register.

MOV MPH, #00H ; Stores a row address into the memory pointer.

MOV MPL, #03H ;

SET1 MPE ; MPE flag <–1

MOV MEM020, @MEM000; Performs a move operation.

0 1 2 3 4 5 6 7 8 9 A B C D E

General
register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

F

0 1 2 3 4 5 6 7 8 9 A B C D E

General

register

0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

F

230

µPD17145 SUB-SERIES USER’S MANUAL

(5) MOV m, #n4 Move immediate data to data memory

<1> Instruction code

<2> Function

(m) <– n4

Immediate data is stored at a data memory location.

<3> Example 1:

The immediate data 0AH is stored at data memory location 0.50H.

(0.50H) <– 0AH

MEM050 MEM 0.50H

MOV MEM050, #0AH

Example 2:

When address 0.00H is specified as a data memory location, and IXH = 0, IXM = 3, IXL = 2, and

IXE flag = 1, immediate data 07H is stored at address 0.32H.

(0.32H) <– 07H

MEM000 MEM 0.00H

MOV IXH, #00H ; IX <– 00000110010B (0.32H)

MOV IXM, #03H

MOV IXL, #02H

SET1 IXE ; IXE flag <–1

MOV MEM000, #07H

(6) MOVT DBF, @AR Move program memory data specified by AR to DBF

<1> Instruction code

<2> Function

SP <– SP – 1, ASR <– PC, PC <– AR,

DBF <– (PC), PC <– ASR, SP <– SP + 1

The value of the program memory location addressed by the address register AR is stored in data

buffer DBF.

This instruction temporarily uses one level of the stack. So, be careful when nesting subroutines

and interrupts.

10 8 7 4 3 0

11101 mR mC n4

00111 000 0001 0000

231

CHAPTER 20 INSTRUCTION SET

<3> Example

Sixteen-bit table data is transferred to the data buffer consisting of DBF3, DBF2, DBF1, and DBF0

according to the value of the address register consisting of AR3, AR2, AR1, and AR0.

; *

; * * Table data

; *

ORG 10H

DW 0000000000000000B ; (0000H)

DW 1010101111001101B ; (0ABCDH)

; *

; * * Table reference program

; *

MOV AR3, #00H ; AR3 <– 00H Stores 0011H into the address register.

MOV AR2, #00H ; AR2 <– 00H

MOV AR1, #01H ; AR1 <– 01H

MOV AR0, #01H ; AR0 <– 01H

MOVT DBF, @AR ; <– Transfers data held at addresses 0011H to DBF.

In this case, the data is stored in DBF as follows:

DBF3 = 0AH

DBF2 = 0BH

DBF1 = 0CH

DBF0 = 0DH

(7) PUSH AR Push address register

<1> Instruction code

<2> Function

SP <– SP – 1,

ASR <– AR

The stack pointer SP is decremented by 1, after which the value of the address register AR is stored

to the address stack register pointed to by the stack pointer.

00111 000 1101 0000

..........

232

µPD17145 SUB-SERIES USER’S MANUAL

<3> Example 1:

The value 003FH is loaded into the address register, then is transferred to the stack.

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #0FH

PUSH AR

Example 2:

When a CALL instruction is followed by a data table, the return address (the next address after the

data table) of the subroutine is stored in the address register to return control to the return address.

0 1 2 3 4 5 6 7 8 9 A B C D E

0

1

2

3

4

5

6

7

System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

0 0 3 F

S T A C K

0 0 3 F

SUB1 :

POP												AR

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #00H

PUSH AR

RET

ORG												10H

CALL SUB1

 ;
 *
 ; 	DATA TABLE

 ;

DW 1A1FH

DW 002FH

DW 010AH

DW 0555H

DW 0FFFH

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

When a POP instruction is

executed at this point, the

address register holds the

value 0011H (the next address

after the CALL instruction).

**
*

233

CHAPTER 20 INSTRUCTION SET

(8) POP AR Pop address register

<1> Instruction code

<2> Function

AR <– ASR,

SP <– SP + 1

The value stored in the address stack register pointed to by the stack pointer SP is transferred to

address register AR, after which the stack pointer SP is incremented by one.

<3> Example

In interrupt handling, the interrupt service routine may change the contents of PSW. In such a case,

the contents of PSW are transferred via WR to the address register at the start of interrupt handling,

then are saved to the address stack register with the PUSH instruction. Then, before a return, the

contents of PSW are returned to the address register with the POP instruction, then to PSW via WR.

00111 000 1100 0000

PEEK

POKE

PUSH

POP

PEEK

POKE

EI

RETI

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

EI

Interrupt service routine

Interrupt source

occurrence

AR

WR,AR0

PSW,WR

WR,PSW

AR0,WR

AR

234

µPD17145 SUB-SERIES USER’S MANUAL

(9) PEEK WR, rf Peek register file to window register

<1> Instruction code

<2> Function

WR <– (rf)

Register file data is stored to the window register WR.

<3> Example

The value of the stack pointer SP at address 01H in the register file is stored to the window register.

PEEK WR, SP

00111

10 8 7 04 3

rfR 0011 rfC

0 1 2 3 4 5 6 7 8 9 A B C D E

0

1

2

3

4

5

6

7 System
register

Column addressBank 0

R
ow

 a
dd

re
ss

F

WR

0 1 2 3 4 5 6 7 8 9 A B C D E

0

1

2

3

Column address

R
ow

 a
dd

re
ss

F

SP

Register file

235

CHAPTER 20 INSTRUCTION SET

(10) POKE rf, WR Poke window register to register file

<1> Instruction code

<2> Function

(rf) <– WR

The value of the window register WR is stored to the register file.

<3> Example

The immediate data 0FH is stored via the window register to P0DBIO of the register file.

MOV WR, #0FH

POKE P0DBIO, WR ; Places P0D0, P0D1, P0D2, and P0D3, in output

; mode.

10 8 7 4 3 0

00111 rfR 0010 rfC

0 1 2 3 4 5 6 7 8 9 A B C D E

0

1

2

3

4

5

6

7 System
register

Column addressBank 0

R
ow

 a
dd

re
ss

F

WR

0 1 2 3 4 5 6 7 8 9 A B C D E

0

1

2

3

Column address

R
ow

 a
dd

re
ss

F

Register file P0DBIO

236

µPD17145 SUB-SERIES USER’S MANUAL

<4> Caution

When viewed from the program, memory at addresses 40H to 7FH in the register file seems to be

the same as that at addresses 40H to 7FH in the data memory. Therefore, the PEEK instruction

and POKE instruction can access address 40H to address 7FH of each bank of data memory as

well as the register file. For example, these instructions can be used as follows:

MEM05F MEM 0.5FH

PEEK WR, PSW ; Stores the contents of PSW (7FH) in the system

; register to WR.

POKE MEM05F, WR ; Stores the contents of WR to data memory

; address 5FH.

0 1 2 3 4 5 6 7 8 9 A B C D E

0

1

2

3

4

5

6

7 PSW

Column addressBank 0

R
ow

 a
dd

re
ss

F

WR

System register
PEEK WR, PSW

POKE 5FH, WR

Register

file

Data

memory

237

CHAPTER 20 INSTRUCTION SET

(11) GET DBF, p Get peripheral data to data buffer

<1> Instruction code

<2> Function

DBF <– (p)

The value of a peripheral hardware register is stored to data buffer DBF.

The DBF area consists of 16 bits at addresses 0CH to 0FH in the data memory BANK0, regardless

of the value of the bank register.

<3> Example

The value stored in the serial interface shift register SIOSFR (8 bits) is stored to DBF0 and DBF1

in the data buffer.

GET DBF, SIOSFR

<4> Caution

The data buffer consists of 16 bits. However, the number of bits to be accessed depends on the
peripheral hardware. For example, when the GET instruction is executed for the peripheral
hardware register whose actual bit length is 8 bits, the contents of the peripheral hardware register
are stored in the low-order 8 bits (DBF1 and DBF0) of data buffer DBF.

10 8 7 4 3 0

00111 pH 1011 pL

b7 b0

b7 b0

DBF1 DBF0DBF3 DBF2

Retained Retained

Peripheral hardware

register

Data buffer

Actual bits

GET

0 1 2 3 4 5 6 7 8 9 A B C D E

DBF0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

1 2

SIOSFR 12H

Peripheral hardware register

238

µPD17145 SUB-SERIES USER’S MANUAL

(12) PUT p, DBF Put data buffer to peripheral

<1> Instruction code

<2> Function

(p) <– DBF

The value of data buffer DBF is stored to a peripheral hardware register.

The DBF area consists of 16 bits at addresses 0CH to 0FH in the data memory BANK0, regardless

of the value of the bank register.

<3> Example

The values 0AH and 05H are stored at DBF1 and DBF0 of the data buffer, respectively. Then, the

values are transferred to the serial interface shift register (SIOSFR), which is a peripheral register.

MOV BANK, #00H ; Selects bank 0 of the data memory.

MOV DBF0, #05H

MOV DBF1, #0AH

PUT SIOSFR, DBF

<4> Caution

The data buffer consists of 16 bits. However, the number of bits to be accessed depends on the
peripheral hardware. For example, when the PUT instruction is executed for the peripheral hardware
register whose actual bit length is 8 bits, the contents of the low-order 8 bits (DBF1 and DBF0) of
data buffer DBF are stored in the peripheral hardware register (the contents of DBF2 and DBF3 are
invalid).

10 8 7 4 3 0

00111 pH 1010 pL

b7 b0

b7 b0

DBF1 DBF0DBF3 DBF2

Don't care Don't care

Peripheral hardware

register

Data buffer

Actual bits

PUT

b6 b5 b4 b3 b2 b1

0 1 2 3 4 5 6 7 8 9 A B C D E

DBF0

1

2

3

4

5

6

7 System register

Column addressBank 0

R
ow

 a
dd

re
ss

F

A 5

SIOSFR 0A5H

Peripheral hardware register

239

CHAPTER 20 INSTRUCTION SET

20.5.8 Branch Instructions

(1) BR addr Branch to the address

<1> Instruction code

Note See Item <4> (Caution) below.

<2> Function

PC <– addr

A branch to the address specified by addr is caused.

<3> Example

FLY LAB 0FH ; Defines FLY = 0FH.

BR FLY ; Jumps to address 0FH.

BR LOOP1 ; Jumps to LOOP1.

BR $ + 2 ; Jumps to the address two addresses below the

; current address.

BR $ – 3 ; Jumps to the address three addresses above the

; current address.

LOOP1 :

<4> Caution

The concept of page is not involved in the writing of a BR instruction by the assembly language;

the same coding as that of the BR instruction can be used between ROM addresses 0000H to

1FFFH. However, a different operation code is used for the BR instruction to cause a branch to

page 0 (addresses 0000H to 07FFH) and for the BR instruction to cause a branch to page 1

(addresses 07FFH to 0FFFH).

The operation code used for a branch to page 0 is 0C. The operation code used for a branch to

page 1 is 0D. When the assembler of the 17K series is used for assembly, these codes are

automatically converted by referencing branch destinations.

10 0

011xx addrNote

.......
.......

.......
.......

.......

240

µPD17145 SUB-SERIES USER’S MANUAL

In debugging, take care of the operation code when patching is performed using machine code

directly rather than the assembler (Both 0C and 0D must be converted).

When a BR instruction specifies a branch to an address between 0800H and 0FFFH, address

conversion is needed. This means that a converted address is an address incremented by one,

starting from 000H for address 0800H.

Caution The number of pages depends on which µPD17145 sub-series product is being

used.

(2) BR @AR Branch to the address specified by address register

<1> Instruction code

<2> Function

PC <– AR

A branch to the program address specified by address register AR is caused.

00111 000 0100 0000

BR ADD1

BR ADD1

BR ADD1

BR ADD1

0000H

07FFH
0800H

0FFFH

0000H

07FFH
0800H

0FFFH

ADD1:

ADD1:

Page 0

Page 1

Page 0

Page 1

When operation code 0C is to be used (when

the address of a jump destination is in page 0)

When operation code 0D is to be used (when

the address of a jump destination is in page 1)

BR ADD1

0000H

07FFH
0800H

ADD1:0500H

0D01H

0FFFH

0C500

0D501BR ADD2

ADD2:

Machine code (1-4-3-4-4 bit format)

241

CHAPTER 20 INSTRUCTION SET

<3> Example 1:

The value 003FH is stored in address register AR (AR0-AR3), after which the BR @AR instruction

causes a jump to address 003FH.

MOV AR3, #00H ; AR3 <– 00H

MOV AR2, #00H ; AR2 <– 00H

MOV AR1, #03H ; AR1 <– 03H

MOV AR0, #0FH ; AR0 <– 0FH

BR @AR ; Jumps to address 003FH.

Example 2:

The branch destination depends on the value stored at data memory address 0.10H, as follows:

 Value of address 0.10H Branch destination label

00H –> AAA

01H –> BBB

02H –> CCC

03H –> DDD

04H –> EEE

05H –> FFF

06H –> GGG

07H –> HHH

08H - 0FH –> ZZZ

; *

; * * Jump table

; *

ORG 10H

BR AAA

BR BBB

BR CCC

BR DDD

BR EEE

BR FFF

BR GGG

BR HHH

BR ZZZ

MEM010 MEM 0.10H

MOV AR3, #00H ; AR3 <– 00H Stores 001xH in AR.

MOV AR2, #00H ; AR2 <– 00H

MOV AR1, #01H ; AR1 <– 01H

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #02H ; Selects row address 1 to specify a general register.

........

242

µPD17145 SUB-SERIES USER’S MANUAL

ST AR0, MEM010 ; AR0 <– 0.10H

SKLT AR0, #08H

MOV AR0, #08H ; Changes the value of AR0 to 08H if the value of AR0

; is greater than 08H.

BR @AR

<4> Caution

The number of bits available with address register AR (AR0-AR3) depends on the product being.

When using the address register, always check the data sheet of the product.

20.5.9 Subroutine Instructions

(1) CALL addr Call subroutine

<1> Instruction code

<2> Function

SP <– SP – 1, ASR <– PC

PC <– addr, PAGE <– 0

The value of the program counter PC is incremented and stored in the stack, after which a branch

to the subroutine specified by addr is caused.

<3> Example 1:

Example 2:

10 0

11100 addr

MAIN

CALL SUB1

SUB1:

RET

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

MAIN

CALL SUB1

SUB1 :

CALL SUB2

RET

SUB2 :

CALL SUB3

RET

SUB3 :

RET

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

*
*

243

CHAPTER 20 INSTRUCTION SET

(2) CALL @AR Call subroutine specified by address register

<1> Instruction code

<2> Function

SP <– SP – 1,

ASR <– PC,

PC <– AR

The value of the program counter PC is incremented and stored in the stack, after which a branch

to a subroutine, starting at the address specified by address register AR, is caused.

<3> Example 1:

The value 0020H is stored in address register AR (AR0-AR3), after which the CALL @AR instruction

calls the subroutine stored at address 0020H.

MOV AR3, #00H ; AR3 <– 00H

MOV AR2, #00H ; AR2 <– 00H

MOV AR1, #02H ; AR1 <– 02H

MOV AR0, #00H ; AR0 <– 00H

CALL @AR ; Calls the subroutine stored at address 0020H.

Example 2:

A subroutine is called according to the value stored at data memory address 0.10H, as described

below.

Value of address 0.10H Subroutine name

00H –> SUB1

01H –> SUB2

02H –> SUB3

03H –> SUB4

04H –> SUB5

05H –> SUB6

06H –> SUB7

07H –> SUB8

08H - 0FH –> SUB9

00111 000 0101 0000

244

µPD17145 SUB-SERIES USER’S MANUAL

<4> Caution

The number of bits available with address register AR (AR0-AR3) depends on the product being

used. When using the address register, always check the data sheet of the product.

SUB1 :

 ;

 ; Jump table for subroutines

 ;

ORG				10H

BR SUB1

BR SUB2

BR SUB3

BR SUB4

BR SUB5

BR SUB6

BR SUB7

BR SUB8

BR SUB9

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB2 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB3 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB7 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB8 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB9 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB4 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB5 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

SUB6 :
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

RET

.
.
.
.
.
.
.

MOV AR3, #00H ; AR3 <– 00H Stores 001xH in the address register.

MOV AR2, #00H ; AR2 <– 00H

MOV AR1, #01H ; AR1 <– 01H

MOV RPH, #00H ; Selects bank 0 to specify a general register.

MOV RPL, #02H ; Selects row address 1 to specify a general register.

ST AR0, 10H ; AR0 <– 0.10H

SKLT AR0, #08H						; Changes the value of AR0 to 08H if the value of

MOV AR0, #08H ; AR0 is greater than 08H.

CALL @AR

.
.
.
.
.
.
.

.
.
.
.
.
.
.

 Control returns to this point when

the RET instruction is executed by

each subroutine.

To the jump table

*

*
*

245

CHAPTER 20 INSTRUCTION SET

(3) RET Return to the main program from a subroutine

<1> Instruction code

<2> Function

PC <– ASR,

SP <– SP + 1

The RET instruction is used to return from a subroutine to the main program.

A return address, saved to the stack by the CALL instruction, is loaded back into the program counter.

<3> Example

(4) RETSK Return to the main program then skip the next instruction

<1> Instruction code

<2> Function

PC <– ASR, SP <– SP + 1 and skip

The RETSK instruction is used to return from a subroutine to the main program.

The instruction immediately after the CALL instruction is skipped (that is, executed as an NOP

instruction).

This means that a return address, saved to the stack by the CALL instruction, is loaded back into

the program counter PC, after which the program counter is incremented.

00111 000 1110 0000

.
.
.
.
.
.
.
.
.
.
.
.
.
.

CALL SUB1

SUB1 :

RET

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

00111 001 1110 0000

246

µPD17145 SUB-SERIES USER’S MANUAL

<3> Example

When the least significant bit (LSB) of data memory (RAM) address 25H is set to 0, the RET

instruction is executed, after which control returns to the instruction immediately subsequent to the

CALL instruction. When the LSB is set to 1, the RETSK instruction is executed, after which control

returns to the instruction after the instruction that is immediately subsequent to the CALL instruction

(ADD 03H,16H in this example).

(5) RETI Return to the main program from an interrupt service routine

<1> Instruction code

<2> Function

PC <– ASR, INTR <– INTSK, SP <– SP + 1

The RETI instruction is used to return from the interrupt service routine to the main program.

A return address, saved to the stack by a vectored interrupt, is loaded back into the program counter.

In addition, part of the system register (PSWORD) also returns to the state existing prior to the

generation of a vectored interrupt.

20.5.10 Interrupt Instructions

(1) EI Enable interrupt

<1> Instruction code

<2> Function

INTEF <– 1

The EI instruction enables a vectored interrupt.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

CALL SUB1

SUB1 :

RET

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LOOP

03H,16H

BR

ADD
RETSK

SKF 25H, #0001B

; The LSB at address 25H is set to 1.

; The LSB at address 25H is set to 0.

00111 100 1110 0000

00111 000 1111 0000

247

CHAPTER 20 INSTRUCTION SET

<3> Example

An example of the interrupt handling is shown below.

Note Before an interrupt can be accepted (an interrupt request is generated after execution of the EI

instruction, then control is transferred to the interrupt service routine), the interrupt enable flag (IPxxx)

for the interrupt must be set. When an interrupt request is generated after the completion of execution

of the EI instruction, the flow of program control does not change (the interrupt is not accepted) if

the corresponding interrupt enable flag is not set. Note, however, that the interrupt request flag

(IRQxxx) is set, so that the interrupt is accepted when the interrupt enable flag is set.

(2) DI Disable interrupt

<1> Instruction code

<2> Function

INTEF <– 0

The DI instruction disables a vectored interrupt.

<3> Example

See Example of (1) (for EI) above.

00111 001 1111 0000

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

MOV 0AH, #00H

.
.
.
.
.
.
.
.
.
.
.
.

0BH, #01H

0CH, #01H

ADD

ADD

EI

.
.
.
.
.
.
.
.
.
.
.
.

EI

RETI

Interrupt request

generation

Interrupt request

generation

DI

MOV 0AH, #01H

0BH, #01HSUB

.
.
.
.
.
.
.
EI

.
.
.
.
.
.
.

Interrupt service routine

(vector address)Note

248

µPD17145 SUB-SERIES USER’S MANUAL

20.5.11 Other Instructions

(1) STOP s Stop CPU and release by condition s

<1> Instruction code

<2> Function

This instruction stops the system clock, then places the device in STOP mode.

By placing the device in STOP mode, the supply current can be minimized.

A condition for cancelling STOP mode must be specified using operand s.

For information about the STOP mode cancelling condition s, see Section 15.3 .

(2) HALT h Halt CPU and release by condition h

<1> Instruction code

<2> Function

This instruction places the device in HALT mode.

By placing the device in HALT mode, the supply current can be reduced.

A condition for cancelling HALT mode is to be specified using operand h.

For information about the HALT mode cancelling condition h, see Section 15.2 .

(3) NOP No operation

<1> Instruction code

<2> Function

This instruction occupies one machine cycle without performing any operation.

3 0

00111 010 1111 s

3 0

00111 011 1111 h

00111 100 1111 0000

249

CHAPTER 21 ASSEMBLER RESERVED WORDS

CHAPTER 21 ASSEMBLER RESERVED WORDS

21.1 MASK OPTION PSEUDO INSTRUCTIONS

The µPD17145, µPD17147,and µPD17149 has the following mask options.

• Built-in pull-up resistor for pin RESET

• Built-in pull-up resistors for pins P0F1 and P0F0

• Built-in pull-up resistor for pin INT

• Incorporated POC circuit

Specify whether these mask options are used in the source program using mask-option-definition pseudo

instructions.

21.1.1 Specifying Mask Options

Mask options are coded in the assembler source program with the following pseudo instructions.

• OPTION and ENDOP pseudo instructions

• Mask-option-definition pseudo instructions

(1) OPTION and ENDOP pseudo instructions

These pseudo instructions specify the block in which mask options are coded (mask option definition block).

To specify a mask option, code the corresponding mask-option-definition pseudo instruction in the block

enclosed with the OPTION pseudo instruction and ENDOP pseudo instruction.

Format:

Symbol Mnemonic Operand Comment

[label:] OPTION [;comment]

ENDOP

21

.......

250

µPD17145 SUB-SERIES USER’S MANUAL

(2) Mask option definition pseudo instructions

Table 21-1. Mask Option Definition Pseudo Instructions

Option Definition pseudo instruction and format Operand Meaning

Built-in pull-up resistor for OPTRES <operand> OPEN Without pull-up resistor

pin RESET PULLUP With pull-up resistor

Built-in pull-up resistors for OPTP0F <operand-1>, <operand-2>Note OPEN Without pull-up resistor

pins P0F1 and P0F0 PULLUP With pull-up resistor

Built-in pull-up resistor for OPTINT <operand> OPEN Without pull-up resistor

pin INT PULLUP With pull-up resistor

Incorporated POC circuit OPTPOC <operand> NOUSE Without POC circuit

USE With POC circuit

Note <operand-1> and <operand-2> specify the mask options for the P0F1 and P0F0 pins, respectively.

(3) Example of specifying mask options

; Example of specifying mask options in µPD17149

MASK_OPTION:

OPTION ; Beginning of mask option definition block

OPTRES PULLUP ; RESET pin has the built-in pull-up resistor.

OPTP0F PULLUP, OPEN; P0F1 pin has the built-in pull-up resistor.

; P0F0 pin leaves open (externa pull-up).

OPTINT PULLUP ; INT pin has the built-in pull-up resistor.

OPTPOC NOUSE ; Internal POC circuit is not used.

ENDOP ; End of mask option definition block

251

CHAPTER 21 ASSEMBLER RESERVED WORDS

21.2 RESERVED SYMBOLS

The reserved symbols defined in the µPD17149 device file (AS17149) are listed below.

System register (SYSREG)

Symbolic name Attribute Value Read/write Description

AR3 MEM 0.74H R Bits 15 to 12 of the address register

AR2 MEM 0.75H R/W Bits 11 to 8 of the address register

AR1 MEM 0.76H R/W Bits 7 to 4 of the address register

AR0 MEM 0.77H R/W Bits 3 to 0 of the address register

WR MEM 0.78H R/W Window register

BANK MEM 0.79H R/W Bank register

IXH MEM 0.7AH R/W Index register high

MPH MEM 0.7AH R/W Data memory row address pointer high

MPE FLG 0.7AH.3 R/W Memory pointer enable flag

IXM MEM 0.7BH R/W Index register middle

MPL MEM 0.7BH R/W Data memory row address pointer low

IXL MEM 0.7CH R/W Index register low

RPH MEM 0.7DH R/W General register pointer high

RPL MEM 0.7EH R/W General register pointer low

PSW MEM 0.7FH R/W Program status word

BCD FLG 0.7EH.0 R/W BCD flag

CMP FLG 0.7FH.3 R/W Compare flag

CY FLG 0.7FH.2 R/W Carry flag

Z FLG 0.7FH.1 R/W Zero flag

IXE FLG 0.7FH.0 R/W Index enable flag

252

µPD17145 SUB-SERIES USER’S MANUAL

Figure 21-1. System Register Configuration

Notes 1. A bit indicating zero is fixed to 0.

2. Bit b3 and b2 of AR2 are always 0 for the µPD17145. Bit b3 of AR2 is always 0 also for the

µPD17147.

Data buffer (DBF)

Symbolic name Attribute Value Read/write Description

DBF3 MEM 0.0CH R/W DBF bits 15 to 12

DBF2 MEM 0.0DH R/W DBF bits 11 to 8

DBF1 MEM 0.0EH R/W DBF bits 7 to 4

DBF0 MEM 0.0FH R/W DBF bits 3 to 0

74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

IXH IXM

MPH MPL
AR3 AR2 AR1 AR0 WR BANKSymbol

Address

Window

register

(WR)

Bank

register

(BANK)

Address register

(AR)

General

register

pointer

(RP)

Program

status

word

(PSWORD)

IXL RPH RPL PSW

Data memory

row address

pointer (MP)

Index register

(IX)

Name

Bit

M

P

E

B

C

D

C

M

P

C

Y Z

I

X

E

0 0 0 0 0 0 0 0 0 0 0 0 0Data

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b 1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

(IX)

(RP)(BANK) (MP)(AR)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Not

defined 0

Initial value

when reset 0

0 0 0
Note 1

Note 2

253

CHAPTER 21 ASSEMBLER RESERVED WORDS

Port register

Symbolic name Attribute Value Read/write Description

P0A3 FLG 0.70H.3 R/W Port 0A bit 3

P0A2 FLG 0.70H.2 R/W Port 0A bit 2

P0A1 FLG 0.70H.1 R/W Port 0A bit 1

P0A0 FLG 0.70H.0 R/W Port 0A bit 0

P0B3 FLG 0.71H.3 R/W Port 0B bit 3

P0B2 FLG 0.71H.2 R/W Port 0B bit 2

P0B1 FLG 0.71H.1 R/W Port 0B bit 1

P0B0 FLG 0.71H.0 R/W Port 0B bit 0

P0C3 FLG 0.72H.3 R/W Port 0C bit 3

P0C2 FLG 0.72H.2 R/W Port 0C bit 2

P0C1 FLG 0.72H.1 R/W Port 0C bit 1

P0C0 FLG 0.72H.0 R/W Port 0C bit 0

P0D3 FLG 0.73H.3 R/W Port 0D bit 3

P0D2 FLG 0.73H.2 R/W Port 0D bit 2

P0D1 FLG 0.73H.1 R/W Port 0D bit 1

P0D0 FLG 0.73H.0 R/W Port 0D bit 0

P0E3 FLG 0.6EH.3 R/W Port 0E bit 3

P0E2 FLG 0.6EH.2 R/W Port 0E bit 2

P0E1 FLG 0.6EH.1 R/W Port 0E bit 1

P0E0 FLG 0.6EH.0 R/W Port 0E bit 0

P0F1 FLG 0.6FH.1 R Port 0F bit 1

P0F0 FLG 0.6FH.0 R Port 0F bit 0

254

µPD17145 SUB-SERIES USER’S MANUAL

Register file (control register)

 (1/2)

Symbolic name Attribute Value Read/write Description

SP MEM 0.81H R/W Stack pointer

SIOTS FLG 0.82H.3 R/W Serial interface start flag

SIOHIZ FLG 0.82H.2 R/W Function selection flag for the P0D1/SO pin

SIOCK1 FLG 0.82H.1 R/W Bit 1 of serial clock selection flag

SIOCK0 FLG 0.82H.0 R/W Bit 0 of serial clock selection flag

WDTRES FLG 0.83H.3 R/W Watchdog timer reset flag

WDTEN FLG 0.83H.0 R/W Watchdog timer enable flag

TM1OSEL FLG 0.8BH.3 R/W Function selection flag for the P0D3/TM1OUT pin

SIOEN FLG 0.8BH.0 R/W Serial interface enable flag

P0EGPU FLG 0.8CH.2 R/W P0E group pull-up selection flag (1: Pull-up)

P0BGPU FLG 0.8CH.1 R/W P0B group pull-up selection flag (1: Pull-up)

P0AGPU FLG 0.8CH.0 R/W P0A group pull-up selection flag (1: Pull-up)

P0DBPU3 FLG 0.8DH.3 R/W P0D3 pull-up selection flag (1: Pull-up)

P0DBPU2 FLG 0.8DH.2 R/W P0D2 pull-up selection flag (1: Pull-up)

P0DBPU1 FLG 0.8DH.1 R/W P0D1 pull-up selection flag (1: Pull-up)

P0DBPU0 FLG 0.8DH.0 R/W P0D0 pull-up selection flag (1: Pull-up)

INT FLG 0.8FH.0 R INT pin status flag

TM0EN FLG 0.91H.3 R/W Timer 0 enable flag

TM0RES FLG 0.91H.2 R/W Timer 0 reset flag

TM0CK1 FLG 0.91H.1 R/W Bit 1 of count pulse selection flag for timer 0

TM0CK0 FLG 0.91H.0 R/W Bit 0 of count pulse selection flag for timer 0

TM1EN FLG 0.92H.3 R/W Timer 1 enable flag

TM1RES FLG 0.92H.2 R/W Timer 1 reset flag

TM1CK1 FLG 0.92H.1 R/W Bit 1 of count pulse selection flag for timer 1

TM1CK0 FLG 0.92H.0 R/W Bit 0 of count pulse selection flag for timer 1

BTMISEL FLG 0.93H.3 R/W Selection flag for the BTM interval

BTMRES FLG 0.93H.2 R/W Basic interval timer reset flag

BTMCK1 FLG 0.93H.1 R/W Bit 1 of count pulse selection flag for the basic interval timer

BTMCK0 FLG 0.93H.0 R/W Bit 0 of count pulse selection flag for the basic interval timer

P0C3IDI FLG 0.9BH.3 R/W ADC3 and P0C3 pin function selection flag

P0C2IDI FLG 0.9BH.2 R/W ADC2 and P0C2 pin function selection flag

P0C1IDI FLG 0.9BH.1 R/W ADC1 and P0C1 pin function selection flag

P0C0IDI FLG 0.9BH.0 R/W ADC0 and P0C0 pin function selection flag

255

CHAPTER 21 ASSEMBLER RESERVED WORDS

Register file (control register)

(2/2)

Symbolic name Attribute Value Read/write Description

P0CBIO3 FLG 0.9CH.3 R/W Input/output selection flag for P0C3 (1: Output port)

P0CBIO2 FLG 0.9CH.2 R/W Input/output selection flag for P0C2 (1: Output port)

P0CBIO1 FLG 0.9CH.1 R/W Input/output selection flag for P0C1 (1: Output port)

P0CBIO0 FLG 0.9CH.0 R/W Input/output selection flag for P0C0 (1: Output port)

IEGMD1 FLG 0.9FH.1 R/W Bit 1 of detection edge selection flag for the INT pin

IEGMD0 FLG 0.9FH.0 R/W Bit 0 of detection edge selection flag for the INT pin

ADCSTRT FLG 0.0A0H.0 R/W A/D converter start flag (always 0 when read)

ADCSOFT FLG 0.0A1H.3 R/W A/D converter operating mode selection flag
(1: Single mode)

ADCCMP FLG 0.0A1H.1 R A/D converter comparison result flag
(valid only in the single mode)

ADCEND FLG 0.0A1H.0 R A/D converter conversion end flag

ADCCH3 FLG 0.0A2H.3 R/W Dummy flag

ADCCH2 FLG 0.0A2H.2 R/W Dummy flag

ADCCH1 FLG 0.0A2H.1 R/W Bit 1 of channel selection flag for the A/D converter

ADCCH0 FLG 0.0A2H.0 R/W Bit 0 of channel selection flag for the A/D converter

P0DBIO3 FLG 0.0ABH.3 R/W Input/output selection flag for P0D3 (1: Output port)

P0DBIO2 FLG 0.0ABH.2 R/W Input/output selection flag for P0D2 (1: Output port)

P0DBIO1 FLG 0.0ABH.1 R/W Input/output selection flag for P0D1 (1: Output port)

P0DBIO0 FLG 0.0ABH.0 R/W Input/output selection flag for P0D0 (1: Output port)

P0EGIO FLG 0.0ACH.2 R/W Group input/output selection flag for P0E
(1: All P0E pins are output ports.)

P0BGIO FLG 0.0ACH.1 R/W Group input/output selection flag for P0B
(1: All P0B pins are output ports.)

P0AGIO FLG 0.0ACH.0 R/W Group input/output selection flag for P0A
(1: All P0A pins are output ports.)

IPSIO FLG 0.0AEH.0 R/W Interrupt enable flag for the serial interface

IPBTM FLG 0.0AFH.3 R/W Interrupt enable flag for the basic interval timer

IPTM1 FLG 0.0AFH.2 R/W Interrupt enable flag for timer 1

IPTM0 FLG 0.0AFH.1 R/W Interrupt enable flag for timer 0

IP FLG 0.0AFH.0 R/W Interrupt enable flag for the INT pin

IRQSIO FLG 0.0BBH.0 R/W Interrupt request flag for the serial interface

IRQBTM FLG 0.0BCH.0 R/W Interrupt request flag for the basic interval timer

IRQTM1 FLG 0.0BDH.0 R/W Interrupt request flag for timer 1

IRQTM0 FLG 0.0BEH.0 R/W Interrupt request flag for timer 0

IRQ FLG 0.0BFH.0 R/W Interrupt request flag for the INT pin

256

µPD17145 SUB-SERIES USER’S MANUAL

Peripheral hardware register

Symbolic name Attribute Value Read/write Description

SIOSFR DAT 01H R/W Peripheral address of the shift register

TM0M DAT 02H W Peripheral address of the timer 0 modulo register

TM1M DAT 03H W Peripheral address of the timer 1 modulo register

ADCR DAT 04H R/W Peripheral address of A/D converter data register

TM0TM1C DAT 45H R Peripheral address of timer 0 timer 1 count register

AR DAT 40H R/W Peripheral address of the address register for GET, PUT,
PUSH, CALL, BR, MOVT, and INC instructions

Others

Symbolic name Attribute Value Description

DBF DAT 0FH Fixed operand value for a GET/PUT/MOVT instruction

IX DAT 01H Fixed operand value for an INC instruction

257

CHAPTER 21 ASSEMBLER RESERVED WORDS

[MEMO]

258

µPD17145 SUB-SERIES USER’S MANUAL

Figure 21-2. Control Register Configuration (1/2)

Remark The address enclosed in parentheses apply when the assembler is used.

The names of all the flags in the control registers are assembler reserved words saved in the

device file. Using these reserved words is useful in programming.

0 1 2 3 4 5 6 7

Column address

Row

address Item

Symbol

When reset

Read/

Write

Symbol

When reset

Read/

Write

Symbol

When reset

Read/

Write

Symbol

When reset

Read/

Write

R/W R/W R/W

R/W R/W R/W

R/W R/WR/W R

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

T

M

0

E

N

T

M

0

R

E

S

T

M

0

C

K

0

T

M

1

E

N

T

M

1

R

E

S

T

M

1

C

K

0

B

T

M

I

S

E

L

B

T

M

R

E

S

B

T

M

C

K

1

B

T

M

C

K

0

T

M

1

C

K

1

T

M

0

C

K

1

A

D

C

S

T

R

T

0 0 0

A

D

C

S

O

F

T

A

D

C

C

M

P

0

A

D

C

E

N

D

A

D

C

C

H

3

A

D

C

C

H

2

A

D

C

C

H

1

A

D

C

C

H

0

S

P

S

I

O

T

S

S

I

O

H

I

Z

S

I

O

C

K

1

S

I

O

C

K

0

0 0 0

W

D

T

R

E

S

W

D

T

E

N

0

(8)

1

(9)

2

(A)

3

(B)

259

CHAPTER 21 ASSEMBLER RESERVED WORDS

Figure 21-2. Control Register Configuration (2/2)

Note The INT flag depends on the status of the INT pin.

8 9 A B C D E F

R/W R/WR/W

P

0

C

0

I

D

I

0 0 0 0 0 0 0 0

P

0

C

B

I

O

0

R/WR/W

0 0 0 0 0 0 0 1 0 0 0 1

I

R

Q

S

I

O

R/WR/W

S

I

O

E

N

0 0 0 0 0 0 0 0 0 0 0

N
o

te

P

0

B

G

P

U

R/W R/WR/WR/W

P

0

D

B

I

O

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

I

P

S

I

O

R

T

M

1

O

S

E

L

P

0

A

G

P

U

I

N

T

0 0 0 0

I

E

G

M

D

0

I

E

G

M

D

1

P

0

C

1

I

D

I

P

0

C

B

I

O

1

P

0

C

2

I

D

I

P

0

C

B

I

O

2

P

0

C

3

I

D

I

P

0

C

B

I

O

3

0

0

I

P

B

T

M

I

P

T

M

1

I

P

T

M

0

I

P

R/W R/WR/W

0

0

0

P

0

D

B

I

O

1

P

0

D

B

I

O

2

P

0

D

B

I

O

3

P

0

A

G

I

O

P

0

B

G

I

O

P

0

E

G

I

O

0

0

0

I

R

Q

B

T

M

0

0

0

I

R

Q

T

M

1

0

0

0

0 0 0 0

I

R

Q

T

M

0

0

0

0

0 0 0 0

I

R

Q

0

0

0

0

0

0

0

P

0

E

G

P

U

0

0

R/W

0 0 0 0

P

0

D

B

P

U

1

P

0

D

B

P

U

0

P

0

D

B

P

U

3

P

0

D

B

P

U

2

*

260

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

261

APPENDIX A DEVELOPMENT OF THE µPD171XX SUB-SERIES

A

APPENDIX A DEVELOPMENT OF THE µPD171xx SUB-SERIES

µP
D

17
10

3L

µP
D

17
10

3

µP

D
17

10
7L

µP

D
17

10
7

R
O

M
 1

 K
B

C
er

am
ic

, l
ow

 s
up

pl
y

vo
lta

ge

(1
.8

 V
 m

in
.)

C

er
am

ic

 R
C

, l
ow

 s
up

pl
y

vo
lta

ge

(1
.5

 V
 m

in
.)

R

C

µP
D

17
10

4L

µP
D

17
10

4

µP

D
17

10
8L

µP

D
17

10
8

R
O

M
 1

 K
B

C
er

am
ic

, l
ow

 s
up

pl
y

vo
lta

ge

(1
.8

 V
 m

in
.)

C

er
am

ic

R
C

, l
ow

 s
up

pl
y

vo
lta

ge

(1
.5

 V
 m

in
.)

R

C

µP
D

17
13

7A

µP
D

17
13

6A

µP
D

17
13

5A

µP
D

17
13

4A

R
O

M
 4

 K
B

, c
er

am
ic

R

O
M

 4
 K

B
, R

C

R
O

M
 2

 K
B

, c
er

am
ic

R

O
M

 2
 K

B
, R

C

µP
D

17
14

9

µP

D
17

14
7

µP
D

17
14

5

R
O

M
 8

 K
B

, c
er

am
ic

R

O
M

 4
 K

B
, c

er
am

ic

R
O

M
 2

 K
B

, c
er

am
ic

A
/D

 c
on

ve
rt

er

T
im

er
s

S
er

ia
l i

nt
er

fa
ce

P

or
ts

 w
ith

 in
te

rm
ed

ia
te

w

ith
st

an
d

vo
lta

ge
s

A
C

 z
er

oc
ro

ss
 d

et
ec

to
r

: 4
ch

: 3

ch

: 1
ch

A
/D

 c
on

ve
rt

er

T
im

er
s

S
er

ia
l i

nt
er

fa
ce

: 4
ch

: 3

ch

: 1
ch

µP
D

17
13

3

µP

D
17

13
2

R
O

M
 2

 K
B

, c
er

am
ic

R

O
M

 2
 K

B
, R

C

µP
D

17
12

1

µP

D
17

12
0

R
O

M
 1

.5
 K

B
, c

er
am

ic

R
O

M
 1

.5
 K

B
, R

C

C
om

pa
ra

to
r

T
im

er
s

S
er

ia
l i

nt
er

fa
ce

: 4
ch

: 1

ch

: 1
ch

T
im

er
s

S
er

ia
l i

nt
er

fa
ce

: 1
ch

: 1

ch

T
in

y
co

nt
ro

lle
r

16
22

24
28

N
um

be
r

of
 p

in
s

Performance

S
m

al
l g

en
er

al
-p

ur
po

se
 c

on
tr

ol
le

r
(A

 o
ne

-t
im

e
P

R
O

M
 v

er
si

on
 is

 p
ro

vi
de

d
fo

r
ea

ch
 p

ro
dc

t.)

:
C

er
am

ic
 o

sc
ill

at
or

:

R
C

 o
sc

ill
at

or

C
er

am
ic

R

C

262

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

263

 APPENDIX B COMPARISON OF FUNCTIONS OF µPD17145 SUB-SERIES,

µPD17135A, AND µPD17137A

B

*

*

ROM

RAM

µPD17145 µPD17147 µPD17149 µPD17135A µPD17137A

(1/2)

2K bytes 4K bytes 8K bytes 2K bytes 4K bytes

110 x 4 bits 112 x 4 bits

Five levels of address stack

Three levels of interrupt stack

12 (P0A, P0B, P0C)

2 (P0F0, P0F1) 2 (P1B0)

1 (INT)

Pull-up by mask option enabled

1 (INT)

Stack

Instruction execution time

(clock, supply voltage)

2 µs (fx = 8 MHz, VDD = 4.5 to 5.5 V)

4 µs (fx = 4 MHz, VDD = 3.6 to 5.5 V)

8 µs (fx = 2 MHz, VDD = 2.7 to 5.5 V)

2 µs (fx = 8 MHz, VDD = 4.5 to 5.5 V)

4 µs (fx = 4 MHz, VDD = 2.7 to 5.5 V)

CMOS I/O

Dedicated to input

Sense input

8 (P0D, P0E Withstand voltage : VDD)

P0D pull-up : Software

P0E pull-up : Software

8 (P0D, P1A Withstand voltage : 9 V)

P0D pull-up : Mask option

P1A pull-up : Mask option

100 k TYP. (other than P0D)

10 k TYP. (P0D)

100 k TYP. Built-in pull-up resistance

Four 8-bit channels

(VDD = 4.0 to 5.5 V)

A/D converter

(supply voltage)

Four 8-bit channels

(VDD = 4.5 to 5.5 V)

VREF (VREF = 2.5 V to VDD) None (VREF = VADC = VDD)

1 (Also used as a watchdog timer)

Count pulse : fx/8192

 fx/4096

 TM0 count-up

 INT

2 (Timer output : TM1OUT)

TM0 clock : fx/512

 fx/64

 fx/16

 INT

TM1 clock : fx/8192

 fx/128

 fx/16

 TM1 count-up

2 (Timer output : TM0OUT)

TM0 clock : fx/256

 fx/64

 fx/16

 INT

TM1 clock : fx/1024

 fx/512

 fx/256

 TM1 count-up

N-ch open-drain I/O

Reference voltage pin

8-bit

(TM0, TM1)

Basic interval

(BTM)

Timer

I/O

1 (Also used as a watchdog timer)

Count pulse : fx/16384

 fx/4096

 fx/512

 fx/16

264

µPD17145 SUB-SERIES USER’S MANUAL

Caution µPD17145 sub-series, µPD17135A, and µPD17137A are not pin-compatible. Furthermore,

the µPD17145 sub-series does not feature units that are equivalent to the µPD17134A and

µPD17136A (RC oscillation type). For the electrical characteristics of these units, refer to

the data sheet for each unit.

Remark fx : System clock oscillation frequency

*

1

(AC zero cross detection is performed.)1

External

4 (TM0, TM1, BTM, SIO)Internal

Internal

1 (Clock synchronous, three-wire)

Independent of P0D1 latch Also used for P0D1 latch

SIO

HALT, STOP

(Input pin RLS is provided for cancellation.)

HALT, STOPStanby function

128 x 256 count 512 x 256 countOscillation settling time

Mask option Built-inPOC function

28-pin plastic SDIP (400 mil)

28-pin plastic SOP (375 mil)

One-time PROM µPD17P149 µPD17P137A

Package

Inter-

rupt

µPD17145 µPD17147 µPD17149 µPD17135A µPD17137A

(2/2)

265

APPENDIX C DEVELOPMENT TOOLS

C

APPENDIX C DEVELOPMENT TOOLS

The following support tools are available for developing programs for the µPD17145 sub–series.

Hardware

Name Description

In-circuit emulator The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators applicable to the
17K series.
 IE-17K The IE-17K and IE-17K-ET are connected to the PC-9800 series (host machine)
 IE-17K-ETNote 1 or IBM PC/ATTM through the RS-232-C interface. The EMU-17K is inserted into
 EMU-17KNote 2 the extension slot of the PC-9800 series (host machine).

Use the system evaluation board (SE board) corresponding to each product
together with one of these in-circuit emulators. SIMPLEHOST®, a man machine
interface, implements an advanced debug environment.
The EMU-17K also enables user to check the contents of the data memory in
real time.

SE board The SE-17145 is an SE board for the µPD17145 sub-series. It is used solely for
(SE-17145) evaluating the system. It is also used for debugging in combination with the in-

circuit emulator.

Emulation probe The EP-17K28CT is an emulation probe for the 17K series 28-pin shrink DIP (400
(EP-17K28CT) mil).

Emulation probe The EP-17K28GT is an emulation probe for the 17K series 28-pin SOP (375 mil).
(EP-17K28GT) Use this probe together with the conversion adapter EV-9500GT-28Note 3 , to

check the target system with the corresponding SE board.

Conversion adapter The EV-9500GT-28 is an adapter for the 28-pin SOP (375 mil). Use this
(EV-9500GT-28Note 3) conversion adapter to connect the emulation probe, EP-17K28GT, to the target

system.

PROM ProgrammerNote 4 The AF-9703, AF-9704, AF-9705 and AF-9706 are PROM writers for the
AF-9703, AF-9704, µPD17P149. Use one of these PROM writers with the program adapter,
AF-9705 or AF-9706 AF-9808M, to program the µPD17P149.

Programmer adapterNote 4 The AF-9808M is a socket unit for the µPD17P149. It is used with the AF-9703,
(AF-9808M) AF-9704, AF-9705 or AF-9706.

Notes 1. Low-end model, operating on an external power supply

2. The EMU-17K is a product of IC Co., Ltd. Contact IC Co., Ltd. (Tokyo, 03-3447-3793) for details.

3. An EP-17K28GT is supplied together with two EV-9500GT-28s. A set of five EV-9500GT-28s

is also available.

4. The AF-9703, AF-9704, AF-9705, AF-9706, and AF9808-M are products of Ando Electric Co.,

Ltd. Contact Ando Electric Co., Ltd. (Tokyo 03-3733-1151) for details.

266

µPD17145 SUB-SERIES USER’S MANUAL

Software

Name Description Host OS Distribution Part number
machine media

17K series AS17K is an assembler PC-9800 MS-DOSTM 5.25-inch, µS5A10AS17K
assembler applicable to the 17K series. series 2HD
(AS17K) In developing µPD17145,

µPD17147, or µPD17149 3.5-inch, µS5A13AS17K
programs, AS17K is used 2HD
in combination with a device
file (AS17145, AS17147, or IBM PC DOSTM 5.25-inch, µS7B10AS17K
AS17149). PC/ATTM 2HC

3.5-inch, µS7B13AS17K
2HC

Device file AS17145, AS17147, and PC-9800 MS-DOS 5.25-inch, µS5A10AS17145Note

 AS17145 AS17149 are device files series 2HD
 AS17147 for the µPD17145,
 AS17149 µPD17147, µPD17149, 3.5-inch, µS5A13AS17145Note

and µPD17P149. 2HD
They are used together with
the assembler (AS17K) IBM PC/AT PC DOS 5.25-inch, µS7B10AS17145Note

which is applicable to the 2HC
17K series.

3.5-inch, µS7B13AS17145Note

2HC

Support SIMPLEHOST, running on PC-9800 MS-DOS 5.25-inch, µS5A10IE17K
software the WindowsTM, provides series 2HD
(SIMPLEHOST) man machine-interface in

developing programs by 3.5-inch, µS5A13IE17K
using a personal computer Windows 2HD
and the in-circuit emulator.

IBM PC/AT PC DOS 5.25-inch, µS7B10IE17K
2HC

3.5-inch, µS7B13IE17K
2HC

Note µSxxxxAS17145 contains AS17145, AS17147, and AS17149.

Remark The following table lists the versions of the operating systems described in the above table.

OS Versions

MS-DOS Ver. 3.30 to Ver. 5.00ANote

PC DOS Ver. 3.1 to Ver. 5.0Note

Windows Ver. 3.0 to Ver. 3.1

Note MS-DOS versions 5.00 and 5.00A and PC DOS Ver. 5.0 are provided with a task swap function. This

function, however, cannot be used in these software packages.

267

APPENDIX D MASK ROM ORDERING PROCEDURE

APPENDIX D MASK ROM ORDERING PROCEDURE

After program development is completed, the mask ROM is ordered by the following procedure:

(1) Order booking for mask ROM

Give an advance notice of mask ROM ordering to a NEC’s special agent or Sales Department, otherwise

the ordered products may be delivered with delay.

(2) Preparation of media for ordering

A UV-EPROM is used as media for ordering a mask ROM.

Add a /PROM to an assemble option for the assembler (AS17K) to create a hexadecimal file for ordering

a mask ROM. An extension of its file must be .PRONote .

Then, write the hexadecimal file for ordering a mask ROM to a UV-EPROM. Prepare three UV-EPROMs

having the same contents in ordering a mask ROM.

Note An hexadecimal file having .ICE cannot be used for ordering a mask ROM.

(3) Preparation of the required documents

Prepare the following documents when ordering a mask ROM:

• Mask format ROM order sheet

• Mask format ROM order check sheet

(4) Ordering

Send the media created in (2) and the documents created in (3) to a NEC’s special agent or Sales

Department by the date of order booking.

D

268

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

269

APPENDIX E INSTRUCTION INDEX

[Add instructions]
ADD r, m 194

ADD m, #n4 197

ADDC r, m 199

ADDC m, #n4 201

INC AR 203

INC IX 204

[Subtract instructions]
SUB r, m 205

SUB m, #n4 208

SUBC r, m 210

SUBC m, #n4 212

[Logical operation instructions]
OR r, m 214

OR m, #n4 214

AND r, m 215

AND m, #n4 216

XOR r, m 217

XOR m, #n4 218

[Test instructions]
SKT m, #n 219

SKF m, #n 219

[Compare instructions]
SKE m, #n4 229

SKNE m, #n4 221

SKGE m, #n4 221

SKLT m, #n4 222

[Rotation instruction]
RORC r 222

[Transfer instructions]
LD r, m 224

ST m, r 225

MOV @r, m 227

MOV m, @r 228

MOV m, #n4 230

MOVT DBR, @AR 230

PUSH AR 231

POP AR 233

PEEK WR, rf 234

POKE rf, WR 235

GET DBF, p 237

PUT p, DBF 238

[Branch instructions]
BR addr 239

BR @AR 240

[Subroutine instructions]
CALL addr 242

CALL @AR 243

RET 245

RETSK 245

RETI 246

[Interrupt instructions]
EI 246

DI 247

[Other instructions]
STOP s 248

HALT h 248

NOP 248

APPENDIX E INSTRUCTION INDEX

E.1 INSTRUCTION INDEX (BY FUNCTION)

E

270

µPD17145 SUB-SERIES USER’S MANUAL

E.2 INSTRUCTION INDEX (ALPHABETICAL ORDER)

[A]
ADD m, #n4 197

ADD r, m 194

ADDC m, #n4 201

ADDC r, m 199

AND m, #n4 216

AND r, m 215

[B]
BR addr 239

BR @AR 240

[C]
CALL addr 242

CALL @AR 243

[D]
DI 247

[E]
EI 246

[G]
GET DBF, p 237

[H]
HALT h 248

[I]
INC AR 203

INC IX 204

[L]
LD r, m 224

[M]
MOV m, #n4 230

MOV m, @r 228

MOV @r, m 227

MOVT DBF, @AR 230

[N]
NOP 248

[O]
OR m, #n4 214

OR r, m 214

[P]
PEEK WR, rf 234

POKE rf, WR 235

POP AR 233

PUSH AR 231

PUT p, DBF 238

[R]
RET 245

RETI 246

RETSK 245

RORC r 222

[S]
SKE m, #n4 229

SKF m, #n 219

SKGE m, #n4 221

SKLT m, #n4 222

SKNE m, #n4 221

SKT m, #n 219

ST m, r 225

STOP s 248

SUB m, #n4 208

SUB r, m 205

SUBC m, #n4 212

SUBC r, m 210

[X]
XOR m, #n4 218

XOR r, m 217

271

APPENDIX F REVISION HISTORY

APPENDIX F REVISION HISTORY

A revision history is shown below. Chapters appearing in the revised-chapter column indicate those in the

new edition.

Edition Major changes Revised chapter

Second Figure 13-1 has been modified. Chapter 13
Section 13.1.6 has been added.
Section 13.1.7 has been added.
Figure 13-21 has been changed.

Caution 2 for Table 15-1 has been modified. Chapter 15
Section 15.3.3 has been changed.

Section 17.3 has been added. Chapter 17

Note 1 has been added to Section 20.3 . Chapter 20

Appendix B has been modified. Appendix B

F

*

272

µPD17145 SUB-SERIES USER’S MANUAL

[MEMO]

	COVER
	Chapter overview
	Caution on CMOS Devices
	Legal Notice
	Major changes
	Preface
	Related Documents
	Table of Contents

	OVERVIEW
	FUNCTIONS
	ORDERING INFORMATION
	BLOCK DIAGRAM
	PIN CONFIGURATION [TOP VIEW]

	PIN FUNCTIONS
	EXPLANATION OF PIN FUNCTIONS
	EQUIVALENT INPUT/OUTPUT CIRCUITS
	CONNECTION OF UNUSED PINS
	NOTES ON USE OF THE RESET AND P0F 0 /RLS PINS [ONLY FOR NORMAL OPERATION MODE]

	PROGRAM MEMORY [ROM]
	PROGRAM MEMORY CONFIGURATION
	PROGRAM MEMORY USAGE
	TABLE REFERENCE

	PROGRAM COUNTER [PC]
	PROGRAM COUNTER CONFIGURATION
	PROGRAM COUNTER OPERATION

	STACK
	STACK CONFIGURATION
	FUNCTIONS OF THE STACK
	ADDRESS STACK REGISTER [ASR]
	INTERRUPT STACK REGISTER [INTSK]
	STACK POINTER [SP] AND INTERRUPT STACK REGISTER
	STACK OPERATION
	STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS

	DATA MEMORY [RAM]
	DATA MEMORY CONFIGURATION

	GENERAL REGISTER [GR]
	GENERAL REGISTER POINTER [RP]

	SYSTEM REGISTER [SYSREG]
	SYSTEM REGISTER CONFIGURATION
	ADDRESS REGISTER [AR]
	WINDOW REGISTER [WR]
	BANK REGISTER [BANK]
	INDEX REGISTER [IX] AND DATA MEMORY ROW ADDRESS POINTER [MEMORY POINTER: MP]
	GENERAL REGISTER POINTER [RP]
	PROGRAM STATUS WORD [PSWORD]
	WARNINGS CONCERNING USE OF THE SYSTEM REGISTER

	REGISTER FILE [RF]
	REGISTER FILE CONFIGURATION
	FUNCTIONS OF THE REGISTER FILE
	CONTROL REGISTER
	WARNINGS CONCERNING USE OF THE REGISTER FILE

	DATA BUFFER [DBF]
	DATA BUFFER CONFIGURATION
	FUNCTIONS OF THE DATA BUFFER

	ALU BLOCK
	COMPARISON EVALUATIONS
	ALU BLOCK CONFIGURATION
	FUNCTIONS OF THE ALU BLOCK
	ARITHMETIC OPERATIONS [ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD]
	LOGICAL OPERATIONS
	BIT EVALUATIONS
	ROTATIONS

	PORTS
	PORT 0A [P0A 0 , P0A 1 , P0A 2 , P0A 3]
	PORT 0B [P0B 0 , P0B 1 , P0B 2 , P0B 3]
	PORT 0C [P0C 0 /ADC 0 , P0C 1 /ADC 1 , P0C 2 /ADC 2 , P0C 3 /ADC 3]
	PORT 0D [P0D 0 /SCK, P0D 1 /SO, P0D 2 /SI, P0D 3 /TM1OUT]
	PORT 0E [P0E 0 , P0E 1 , P0E 2 , P0E 3]
	PORT 0F [P0F 0 /RLS, P0F 1 /V REF]
	PORT CONTROL REGISTER

	PERIPHERAL HARDWARES
	8-BIT TIMER COUNTER [TM0, TM1]
	BASIC INTERVAL TIMER [BTM]
	A/D CONVERTER
	SERIAL INTERFACE [SIO]
	CHAPTER 14 INTERRUPT FUNCTIONS
	INTERRUPT SOURCES AND VECTOR ADDRESSES
	HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT
	INTERRUPT SEQUENCE

	STANDBY FUNCTION
	OVERVIEW OF THE STANDBY FUNCTION
	HALT MODE
	STOP MODE

	RESET
	RESET FUNCTIONS
	RESETTING

	POC CIRCUIT [MASK OPTION]
	FUNCTIONS OF THE POC CIRCUIT
	CONDITIONS UNDER WHICH THE POC CIRCUIT MAY BE USED
	CAUTIONS FOR USING THE POC CIRCUIT
	SUPPLY VOLTAGE CHARACTERISTIC CONSIDERATIONS AND POC CIRCUIT SPECIFICATIONS
	CHECKING THE POC CIRCUIT OPERATION STATUS EXTERNALLY

	NOTES ON SYSTEM CLOCK OSCILLATOR CONFIGURATION
	WRITING TO AND VERIFYING ONE-TIME PROM
	DIFFERENCES BETWEEN MASK ROM PRODUCTS AND A ONE-TIME PROM PRODUCT
	PROGRAM MEMORY WRITE/VERIFY MODES
	WRITING TO PROGRAM MEMORY
	READING PROGRAM MEMORY

	INSTRUCTION SET
	OVERVIEW OF THE INSTRUCTION SET
	LEGEND
	LIST OF THE INSTRUCTION
	ASSEMBLER [AS17K] BUILT-IN MACRO INSTRUCTIONS
	EXPLANATION OF THE MACRO INSTRUCTIONS

	ASSEMBLER RESERVED WORDS
	MASK OPTION PSEUDO INSTRUCTIONS
	RESERVED SYMBOLS

	APPENDIX
	DEVELOPMENT OF THE µPD171xx SUB-SERIES
	COMPARISON OF FUNCTIONS OF µPD17145 SUB-SERIES, µPD17135A, AND µPD17137A
	DEVELOPMENT TOOLS
	MASK ROM ORDERING PROCEDURE
	INSTRUCTION INDEX
	INSTRUCTION INDEX [BY FUNCTION]
	INSTRUCTION INDEX [ALPHABETICAL ORDER]

	REVISION HISTORY

